Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import fitz # PyMuPDF
|
| 3 |
+
import torch
|
| 4 |
+
import cv2
|
| 5 |
+
import os
|
| 6 |
+
import tempfile
|
| 7 |
+
import shutil
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
+
from sentence_transformers import SentenceTransformer
|
| 10 |
+
import faiss
|
| 11 |
+
|
| 12 |
+
# Load Qwen-VL-Chat
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)
|
| 14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
+
"Qwen/Qwen-VL-Chat",
|
| 16 |
+
device_map="auto",
|
| 17 |
+
torch_dtype=torch.bfloat16,
|
| 18 |
+
trust_remote_code=True
|
| 19 |
+
).eval()
|
| 20 |
+
|
| 21 |
+
# Embedding model
|
| 22 |
+
embed_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 23 |
+
|
| 24 |
+
# Global state for FAISS
|
| 25 |
+
chunks = []
|
| 26 |
+
index = None
|
| 27 |
+
|
| 28 |
+
# PDF processing
|
| 29 |
+
def extract_chunks_from_pdf(pdf_path, chunk_size=1000, overlap=200):
|
| 30 |
+
doc = fitz.open(pdf_path)
|
| 31 |
+
text = ""
|
| 32 |
+
for page in doc:
|
| 33 |
+
text += page.get_text()
|
| 34 |
+
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size - overlap)]
|
| 35 |
+
|
| 36 |
+
def build_faiss_index(chunks):
|
| 37 |
+
embeddings = embed_model.encode(chunks, convert_to_numpy=True)
|
| 38 |
+
dim = embeddings.shape[1]
|
| 39 |
+
idx = faiss.IndexFlatL2(dim)
|
| 40 |
+
idx.add(embeddings)
|
| 41 |
+
return idx
|
| 42 |
+
|
| 43 |
+
def rag_query(query, chunks, index, top_k=3):
|
| 44 |
+
q_emb = embed_model.encode([query], convert_to_numpy=True)
|
| 45 |
+
D, I = index.search(q_emb, top_k)
|
| 46 |
+
return "\n\n".join([chunks[i] for i in I[0]])
|
| 47 |
+
|
| 48 |
+
# Vision/Text chat
|
| 49 |
+
def chat_with_qwen(text=None, image=None):
|
| 50 |
+
elements = []
|
| 51 |
+
if image:
|
| 52 |
+
elements.append({"image": image})
|
| 53 |
+
if text:
|
| 54 |
+
elements.append({"text": text})
|
| 55 |
+
if not elements:
|
| 56 |
+
return "Please upload or type something."
|
| 57 |
+
query = tokenizer.from_list_format(elements)
|
| 58 |
+
response, _ = model.chat(tokenizer, query, history=None)
|
| 59 |
+
return response
|
| 60 |
+
|
| 61 |
+
# Video frame extraction
|
| 62 |
+
def extract_video_frames(video_path, max_frames=3):
|
| 63 |
+
cap = cv2.VideoCapture(video_path)
|
| 64 |
+
frames, count = [], 0
|
| 65 |
+
while len(frames) < max_frames:
|
| 66 |
+
success, frame = cap.read()
|
| 67 |
+
if not success:
|
| 68 |
+
break
|
| 69 |
+
frames.append(frame)
|
| 70 |
+
count += 1
|
| 71 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, count * 30)
|
| 72 |
+
cap.release()
|
| 73 |
+
return frames
|
| 74 |
+
|
| 75 |
+
# Main chatbot logic
|
| 76 |
+
def multimodal_chat(message, history, image=None, video=None, pdf=None):
|
| 77 |
+
global chunks, index
|
| 78 |
+
|
| 79 |
+
# PDF-based RAG
|
| 80 |
+
if pdf:
|
| 81 |
+
chunks = extract_chunks_from_pdf(pdf.name)
|
| 82 |
+
index = build_faiss_index(chunks)
|
| 83 |
+
context = rag_query(message, chunks, index)
|
| 84 |
+
final_prompt = f"Context:\n{context}\n\nQuestion: {message}"
|
| 85 |
+
response = chat_with_qwen(final_prompt)
|
| 86 |
+
return response
|
| 87 |
+
|
| 88 |
+
# Image
|
| 89 |
+
if image:
|
| 90 |
+
response = chat_with_qwen(message, image)
|
| 91 |
+
return response
|
| 92 |
+
|
| 93 |
+
# Video (extract frames and send all in one call)
|
| 94 |
+
if video:
|
| 95 |
+
temp_dir = tempfile.mkdtemp()
|
| 96 |
+
video_path = os.path.join(temp_dir, "vid.mp4")
|
| 97 |
+
shutil.copy(video, video_path)
|
| 98 |
+
frames = extract_video_frames(video_path)
|
| 99 |
+
|
| 100 |
+
# Save and collect image paths
|
| 101 |
+
images = []
|
| 102 |
+
for i, frame in enumerate(frames):
|
| 103 |
+
temp_img_path = os.path.join(temp_dir, f"frame_{i}.jpg")
|
| 104 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 105 |
+
cv2.imwrite(temp_img_path, frame_rgb)
|
| 106 |
+
images.append(temp_img_path)
|
| 107 |
+
|
| 108 |
+
# Combine all frames and text into one query
|
| 109 |
+
elements = [{"image": img} for img in images]
|
| 110 |
+
if message:
|
| 111 |
+
elements.append({"text": message})
|
| 112 |
+
|
| 113 |
+
query = tokenizer.from_list_format(elements)
|
| 114 |
+
response, _ = model.chat(tokenizer, query, history=None)
|
| 115 |
+
return response
|
| 116 |
+
|
| 117 |
+
# Text only
|
| 118 |
+
if message:
|
| 119 |
+
return chat_with_qwen(message)
|
| 120 |
+
|
| 121 |
+
return "Please input a message, image, video, or PDF."
|
| 122 |
+
|
| 123 |
+
# ---- Gradio UI ---- #
|
| 124 |
+
with gr.Blocks(css="""
|
| 125 |
+
body {
|
| 126 |
+
background-color: #f3f6fc;
|
| 127 |
+
}
|
| 128 |
+
.gradio-container {
|
| 129 |
+
font-family: 'Segoe UI', sans-serif;
|
| 130 |
+
}
|
| 131 |
+
h1 {
|
| 132 |
+
background: linear-gradient(to right, #667eea, #764ba2);
|
| 133 |
+
color: white !important;
|
| 134 |
+
padding: 1rem;
|
| 135 |
+
border-radius: 12px;
|
| 136 |
+
margin-bottom: 0.5rem;
|
| 137 |
+
}
|
| 138 |
+
p {
|
| 139 |
+
font-size: 1rem;
|
| 140 |
+
color: white;
|
| 141 |
+
}
|
| 142 |
+
.gr-box {
|
| 143 |
+
background-color: white;
|
| 144 |
+
border-radius: 12px;
|
| 145 |
+
box-shadow: 0 0 10px rgba(0,0,0,0.05);
|
| 146 |
+
padding: 16px;
|
| 147 |
+
}
|
| 148 |
+
footer {display: none !important;}
|
| 149 |
+
""") as demo:
|
| 150 |
+
gr.Markdown(
|
| 151 |
+
"<h1 style='text-align: center;'>Multimodal Chatbot powered by LLAVACMVRL and QWEN-VL</h1>"
|
| 152 |
+
"<p style='text-align: center;'>Ask questions with text, images, videos, or PDFs in a smart and multimodal way.</p>"
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
chatbot = gr.Chatbot(show_label=False, height=450)
|
| 156 |
+
state = gr.State([])
|
| 157 |
+
|
| 158 |
+
with gr.Row():
|
| 159 |
+
txt = gr.Textbox(show_label=False, placeholder="Type a message...", scale=5)
|
| 160 |
+
send_btn = gr.Button("🚀 Send", scale=1)
|
| 161 |
+
|
| 162 |
+
with gr.Row():
|
| 163 |
+
image_input = gr.Image(type="filepath", label="Upload Image")
|
| 164 |
+
video_input = gr.Video(label="Upload Video")
|
| 165 |
+
pdf_input = gr.File(file_types=[".pdf"], label="Upload PDF")
|
| 166 |
+
|
| 167 |
+
def user_send(message, history, image, video, pdf):
|
| 168 |
+
response = multimodal_chat(message, history, image, video, pdf)
|
| 169 |
+
history.append((message, response))
|
| 170 |
+
return "", history
|
| 171 |
+
|
| 172 |
+
send_btn.click(user_send, [txt, state, image_input, video_input, pdf_input], [txt, chatbot])
|
| 173 |
+
txt.submit(user_send, [txt, state, image_input, video_input, pdf_input], [txt, chatbot])
|
| 174 |
+
|
| 175 |
+
# Launch the app
|
| 176 |
+
demo.launch()
|