Spaces:
Running
Running
Jatin Mehra
commited on
Commit
·
63ed7c1
1
Parent(s):
1ee9743
Refactor retrieval and agent functions for improved chunk handling and error management
Browse files- preprocessing.py +93 -38
preprocessing.py
CHANGED
|
@@ -8,6 +8,8 @@ from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
| 8 |
from langchain.memory import ConversationBufferMemory
|
| 9 |
from sentence_transformers import SentenceTransformer
|
| 10 |
import dotenv
|
|
|
|
|
|
|
| 11 |
dotenv.load_dotenv()
|
| 12 |
# Initialize LLM and tools globally
|
| 13 |
|
|
@@ -66,80 +68,133 @@ def build_faiss_index(embeddings):
|
|
| 66 |
index.add(embeddings)
|
| 67 |
return index
|
| 68 |
|
| 69 |
-
def retrieve_similar_chunks(query, index,
|
| 70 |
"""Retrieve top k similar chunks to the query from the FAISS index."""
|
| 71 |
-
query_embedding =
|
| 72 |
distances, indices = index.search(query_embedding, k)
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
# Sort chunks by relevance (lower distance = more relevant)
|
| 77 |
-
context_chunks = sorted(context_chunks, key=lambda x: x[1])
|
| 78 |
context = ""
|
| 79 |
total_tokens = 0
|
| 80 |
max_tokens = 7000 # Leave room for prompt and response
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
for chunk, _, _ in context_chunks: # Unpack three elements
|
| 84 |
chunk_tokens = estimate_tokens(chunk)
|
| 85 |
if total_tokens + chunk_tokens <= max_tokens:
|
| 86 |
context += chunk + "\n\n"
|
| 87 |
total_tokens += chunk_tokens
|
| 88 |
else:
|
| 89 |
break
|
| 90 |
-
|
| 91 |
-
# Set up the search behavior
|
| 92 |
-
search_behavior = (
|
| 93 |
-
"If the context is insufficient, *then* use the 'search' tool to find the answer."
|
| 94 |
-
if Use_Tavily
|
| 95 |
-
else "If the context is insufficient, you *must* state that you don't know."
|
| 96 |
-
)
|
| 97 |
-
|
| 98 |
-
# Define prompt template
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
prompt = ChatPromptTemplate.from_messages([
|
| 101 |
-
("system", """
|
| 102 |
-
You are an expert Q&A system. Your primary function is to answer questions using a given set of documents (Context).
|
| 103 |
|
| 104 |
**Your Process:**
|
| 105 |
|
| 106 |
1. **Analyze the Question:** Understand exactly what the user is asking.
|
| 107 |
-
2. **Scan the Context:** Thoroughly review the 'Context' provided to find relevant information.
|
| 108 |
3. **Formulate the Answer:**
|
| 109 |
-
* If the context contains a clear answer, synthesize it into a concise response.
|
| 110 |
-
*
|
| 111 |
-
*
|
| 112 |
-
*
|
| 113 |
4. **Clarity:** Ensure your final answer is clear, direct, and avoids jargon if possible.
|
| 114 |
|
| 115 |
**Important Rules:**
|
| 116 |
|
| 117 |
-
* **Stick to
|
| 118 |
* **No Speculation:** Do not make assumptions or infer information not explicitly present.
|
| 119 |
-
* **Cite Sources (If Searching):** If you use the
|
| 120 |
-
|
| 121 |
-
("human", "Context: {context}\n\nQuestion: {input}"),
|
| 122 |
MessagesPlaceholder(variable_name="chat_history"),
|
| 123 |
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
| 124 |
])
|
| 125 |
|
| 126 |
-
agent_tools = tools if Use_Tavily else []
|
| 127 |
try:
|
| 128 |
-
agent = create_tool_calling_agent(llm,
|
| 129 |
-
agent_executor = AgentExecutor(agent=agent, tools=
|
| 130 |
-
|
| 131 |
"input": query,
|
| 132 |
"context": context,
|
| 133 |
-
"search_behavior": search_behavior
|
| 134 |
})
|
|
|
|
| 135 |
except Exception as e:
|
| 136 |
-
print(f"Error during agent execution: {str(e)}")
|
| 137 |
-
|
| 138 |
-
("system", "You are a helpful assistant. Use the provided context to answer the user's question."),
|
| 139 |
("human", "Context: {context}\n\nQuestion: {input}")
|
| 140 |
])
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
| 143 |
|
| 144 |
"""if __name__ == "__main__":
|
| 145 |
# Process PDF and prepare index
|
|
|
|
| 8 |
from langchain.memory import ConversationBufferMemory
|
| 9 |
from sentence_transformers import SentenceTransformer
|
| 10 |
import dotenv
|
| 11 |
+
from langchain.tools import tool
|
| 12 |
+
import traceback
|
| 13 |
dotenv.load_dotenv()
|
| 14 |
# Initialize LLM and tools globally
|
| 15 |
|
|
|
|
| 68 |
index.add(embeddings)
|
| 69 |
return index
|
| 70 |
|
| 71 |
+
def retrieve_similar_chunks(query, index, chunks_with_metadata, embedding_model, k=10, max_chunk_length=1000):
|
| 72 |
"""Retrieve top k similar chunks to the query from the FAISS index."""
|
| 73 |
+
query_embedding = embedding_model.encode([query], convert_to_tensor=True).cpu().numpy()
|
| 74 |
distances, indices = index.search(query_embedding, k)
|
| 75 |
+
|
| 76 |
+
# Ensure indices are within bounds of chunks_with_metadata
|
| 77 |
+
valid_indices = [i for i in indices[0] if 0 <= i < len(chunks_with_metadata)]
|
| 78 |
+
|
| 79 |
+
return [
|
| 80 |
+
(chunks_with_metadata[i]["text"][:max_chunk_length], distances[0][j], chunks_with_metadata[i]["metadata"])
|
| 81 |
+
for j, i in enumerate(valid_indices) # Use valid_indices
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def create_vector_search_tool(faiss_index, document_chunks_with_metadata, embedding_model, k=3, max_chunk_length=1000):
|
| 86 |
+
@tool
|
| 87 |
+
def vector_database_search(query: str) -> str:
|
| 88 |
+
"""
|
| 89 |
+
Searches the currently uploaded PDF document for information semantically similar to the query.
|
| 90 |
+
Use this tool when the user's question is likely answerable from the content of the specific document they provided.
|
| 91 |
+
Input should be the search query.
|
| 92 |
+
"""
|
| 93 |
+
# Retrieve similar chunks using the provided session-specific components
|
| 94 |
+
similar_chunks_data = retrieve_similar_chunks(
|
| 95 |
+
query,
|
| 96 |
+
faiss_index,
|
| 97 |
+
document_chunks_with_metadata, # This is the list of dicts {text: ..., metadata: ...}
|
| 98 |
+
embedding_model,
|
| 99 |
+
k=k,
|
| 100 |
+
max_chunk_length=max_chunk_length
|
| 101 |
+
)
|
| 102 |
+
# Format the response
|
| 103 |
+
if not similar_chunks_data:
|
| 104 |
+
return "No relevant information found in the document for that query."
|
| 105 |
+
|
| 106 |
+
context = "\n\n---\n\n".join([chunk_text for chunk_text, _, _ in similar_chunks_data])
|
| 107 |
+
return f"The following information was found in the document regarding '{query}':\n{context}"
|
| 108 |
|
| 109 |
+
return vector_database_search
|
| 110 |
+
|
| 111 |
+
def agentic_rag(llm, agent_specific_tools, query, context_chunks, memory, Use_Tavily=False): # Renamed 'tools' to 'agent_specific_tools'
|
| 112 |
# Sort chunks by relevance (lower distance = more relevant)
|
| 113 |
+
context_chunks = sorted(context_chunks, key=lambda x: x[1]) if context_chunks else []
|
| 114 |
context = ""
|
| 115 |
total_tokens = 0
|
| 116 |
max_tokens = 7000 # Leave room for prompt and response
|
| 117 |
+
|
| 118 |
+
for chunk, _, _ in context_chunks:
|
|
|
|
| 119 |
chunk_tokens = estimate_tokens(chunk)
|
| 120 |
if total_tokens + chunk_tokens <= max_tokens:
|
| 121 |
context += chunk + "\n\n"
|
| 122 |
total_tokens += chunk_tokens
|
| 123 |
else:
|
| 124 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
context = context.strip() if context else "No initial context provided from preliminary search."
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# Dynamically build the tool guidance for the prompt
|
| 130 |
+
# Tool names: 'vector_database_search', 'tavily_search_results_json'
|
| 131 |
+
has_document_search = any(t.name == "vector_database_search" for t in agent_specific_tools)
|
| 132 |
+
has_web_search = any(t.name == "tavily_search_results_json" for t in agent_specific_tools)
|
| 133 |
+
|
| 134 |
+
guidance_parts = []
|
| 135 |
+
if has_document_search:
|
| 136 |
+
guidance_parts.append(
|
| 137 |
+
"If the direct context (if any from preliminary search) is insufficient and the question seems answerable from the uploaded document, "
|
| 138 |
+
"use the 'vector_database_search' tool to find relevant information within the document."
|
| 139 |
+
)
|
| 140 |
+
if has_web_search: # Tavily tool would only be in agent_specific_tools if Use_Tavily was true
|
| 141 |
+
guidance_parts.append(
|
| 142 |
+
"If the information is not found in the document (after using 'vector_database_search' if appropriate) "
|
| 143 |
+
"or the question is of a general nature not specific to the document, "
|
| 144 |
+
"use the 'tavily_search_results_json' tool for web searches."
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
if not guidance_parts:
|
| 148 |
+
search_behavior_instructions = "If the context is insufficient, you *must* state that you don't know."
|
| 149 |
+
else:
|
| 150 |
+
search_behavior_instructions = " ".join(guidance_parts)
|
| 151 |
+
search_behavior_instructions += ("\n * If, after all steps and tool use (if any), you cannot find an answer, "
|
| 152 |
+
"respond with: \"Based on the available information, I don't know the answer.\"")
|
| 153 |
+
|
| 154 |
prompt = ChatPromptTemplate.from_messages([
|
| 155 |
+
("system", f"""
|
| 156 |
+
You are an expert Q&A system. Your primary function is to answer questions using a given set of documents (Context) and available tools.
|
| 157 |
|
| 158 |
**Your Process:**
|
| 159 |
|
| 160 |
1. **Analyze the Question:** Understand exactly what the user is asking.
|
| 161 |
+
2. **Scan the Context:** Thoroughly review the 'Context' provided (if any) to find relevant information. This context is derived from a preliminary similarity search in the document.
|
| 162 |
3. **Formulate the Answer:**
|
| 163 |
+
* If the initially provided context contains a clear answer, synthesize it into a concise response. Start your answer with "Based on the Document, ...".
|
| 164 |
+
* {search_behavior_instructions}
|
| 165 |
+
* When using the 'vector_database_search' tool, the information comes from the document. Prepend your answer with "Based on the Document, ...".
|
| 166 |
+
* When using the 'tavily_search_results_json' tool, the information comes from the web. Prepend your answer with "According to a web search, ...". If no useful information is found, state that.
|
| 167 |
4. **Clarity:** Ensure your final answer is clear, direct, and avoids jargon if possible.
|
| 168 |
|
| 169 |
**Important Rules:**
|
| 170 |
|
| 171 |
+
* **Stick to Sources:** Do *not* use any information outside of the provided 'Context', document search results ('vector_database_search'), or web search results ('tavily_search_results_json').
|
| 172 |
* **No Speculation:** Do not make assumptions or infer information not explicitly present.
|
| 173 |
+
* **Cite Sources (If Web Searching):** If you use the 'tavily_search_results_json' tool and it provides source links, you MUST include them in your response.
|
| 174 |
+
"""),
|
| 175 |
+
("human", "Context: {{context}}\n\nQuestion: {{input}}"), # Double braces for f-string in f-string
|
| 176 |
MessagesPlaceholder(variable_name="chat_history"),
|
| 177 |
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
| 178 |
])
|
| 179 |
|
|
|
|
| 180 |
try:
|
| 181 |
+
agent = create_tool_calling_agent(llm, agent_specific_tools, prompt)
|
| 182 |
+
agent_executor = AgentExecutor(agent=agent, tools=agent_specific_tools, memory=memory, verbose=True)
|
| 183 |
+
response_payload = agent_executor.invoke({
|
| 184 |
"input": query,
|
| 185 |
"context": context,
|
|
|
|
| 186 |
})
|
| 187 |
+
return response_payload # Expecting dict like {'output': '...'}
|
| 188 |
except Exception as e:
|
| 189 |
+
print(f"Error during agent execution: {str(e)} \nTraceback: {traceback.format_exc()}")
|
| 190 |
+
fallback_prompt_template = ChatPromptTemplate.from_messages([
|
| 191 |
+
("system", "You are a helpful assistant. Use the provided context to answer the user's question. If the context is insufficient, say you don't know."),
|
| 192 |
("human", "Context: {context}\n\nQuestion: {input}")
|
| 193 |
])
|
| 194 |
+
# Format the prompt with the actual context and query
|
| 195 |
+
formatted_fallback_prompt = fallback_prompt_template.format_prompt(context=context, input=query).to_messages()
|
| 196 |
+
response = llm.invoke(formatted_fallback_prompt)
|
| 197 |
+
return {"output": response.content if hasattr(response, 'content') else str(response)}
|
| 198 |
|
| 199 |
"""if __name__ == "__main__":
|
| 200 |
# Process PDF and prepare index
|