Spaces:
Sleeping
Sleeping
Jatin Mehra
commited on
Commit
·
447c09c
1
Parent(s):
4dbeb79
Add FAISS indexing utilities and enhance text processing functions for improved chunking and validation
Browse files- utils/faiss_utils.py +146 -0
- utils/text_processing.py +196 -0
utils/faiss_utils.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
FAISS indexing utilities for similarity search.
|
| 3 |
+
|
| 4 |
+
This module provides utilities for building and searching FAISS indexes.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from typing import List, Tuple, Any, Dict
|
| 8 |
+
import numpy as np
|
| 9 |
+
import faiss
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
|
| 12 |
+
from configs.config import Config
|
| 13 |
+
from utils.text_processing import validate_chunk_data
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def build_faiss_index(embeddings: np.ndarray) -> faiss.IndexHNSWFlat:
|
| 17 |
+
"""
|
| 18 |
+
Build a FAISS HNSW index from embeddings for similarity search.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
embeddings: Numpy array of embeddings
|
| 22 |
+
|
| 23 |
+
Returns:
|
| 24 |
+
FAISS HNSW index
|
| 25 |
+
"""
|
| 26 |
+
dim = embeddings.shape[1]
|
| 27 |
+
index = faiss.IndexHNSWFlat(dim, Config.FAISS_NEIGHBORS)
|
| 28 |
+
index.hnsw.efConstruction = Config.FAISS_EF_CONSTRUCTION
|
| 29 |
+
index.hnsw.efSearch = Config.FAISS_EF_SEARCH
|
| 30 |
+
index.add(embeddings)
|
| 31 |
+
return index
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def retrieve_similar_chunks(
|
| 35 |
+
query: str,
|
| 36 |
+
index: faiss.IndexHNSWFlat,
|
| 37 |
+
chunks_with_metadata: List[Dict[str, Any]],
|
| 38 |
+
embedding_model: SentenceTransformer,
|
| 39 |
+
k: int = None,
|
| 40 |
+
max_chunk_length: int = None
|
| 41 |
+
) -> List[Tuple[str, float, Dict[str, Any]]]:
|
| 42 |
+
"""
|
| 43 |
+
Retrieve top k similar chunks to the query from the FAISS index.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
query: Search query
|
| 47 |
+
index: FAISS index
|
| 48 |
+
chunks_with_metadata: List of chunk dictionaries
|
| 49 |
+
embedding_model: SentenceTransformer model
|
| 50 |
+
k: Number of chunks to retrieve
|
| 51 |
+
max_chunk_length: Maximum length for returned chunks
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
List of tuples (chunk_text, distance, metadata)
|
| 55 |
+
"""
|
| 56 |
+
if k is None:
|
| 57 |
+
k = Config.DEFAULT_K_CHUNKS
|
| 58 |
+
if max_chunk_length is None:
|
| 59 |
+
max_chunk_length = Config.DEFAULT_CHUNK_SIZE
|
| 60 |
+
|
| 61 |
+
query_embedding = embedding_model.encode([query], convert_to_tensor=True).cpu().numpy()
|
| 62 |
+
distances, indices = index.search(query_embedding, k)
|
| 63 |
+
|
| 64 |
+
# Ensure indices are within bounds and create mapping for correct distances
|
| 65 |
+
valid_results = []
|
| 66 |
+
for idx_pos, chunk_idx in enumerate(indices[0]):
|
| 67 |
+
if 0 <= chunk_idx < len(chunks_with_metadata):
|
| 68 |
+
chunk_text = chunks_with_metadata[chunk_idx]["text"][:max_chunk_length]
|
| 69 |
+
# Only include chunks with meaningful content
|
| 70 |
+
if chunk_text.strip(): # Skip empty chunks
|
| 71 |
+
result = (
|
| 72 |
+
chunk_text,
|
| 73 |
+
distances[0][idx_pos], # Use original position for correct distance
|
| 74 |
+
chunks_with_metadata[chunk_idx]["metadata"]
|
| 75 |
+
)
|
| 76 |
+
if validate_chunk_data(result):
|
| 77 |
+
valid_results.append(result)
|
| 78 |
+
|
| 79 |
+
return valid_results
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def search_index_with_validation(
|
| 83 |
+
query: str,
|
| 84 |
+
index: faiss.IndexHNSWFlat,
|
| 85 |
+
chunks_with_metadata: List[Dict[str, Any]],
|
| 86 |
+
embedding_model: SentenceTransformer,
|
| 87 |
+
k: int = None,
|
| 88 |
+
similarity_threshold: float = None
|
| 89 |
+
) -> List[Tuple[str, float, Dict[str, Any]]]:
|
| 90 |
+
"""
|
| 91 |
+
Search index with additional validation and filtering.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
query: Search query
|
| 95 |
+
index: FAISS index
|
| 96 |
+
chunks_with_metadata: List of chunk dictionaries
|
| 97 |
+
embedding_model: SentenceTransformer model
|
| 98 |
+
k: Number of chunks to retrieve
|
| 99 |
+
similarity_threshold: Threshold for filtering results
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
List of validated and filtered chunk tuples
|
| 103 |
+
"""
|
| 104 |
+
if not query or len(query.strip()) < 3:
|
| 105 |
+
return []
|
| 106 |
+
|
| 107 |
+
if similarity_threshold is None:
|
| 108 |
+
similarity_threshold = Config.SIMILARITY_THRESHOLD
|
| 109 |
+
|
| 110 |
+
try:
|
| 111 |
+
# Retrieve similar chunks
|
| 112 |
+
similar_chunks = retrieve_similar_chunks(
|
| 113 |
+
query, index, chunks_with_metadata, embedding_model, k
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Filter by similarity threshold
|
| 117 |
+
filtered_chunks = [
|
| 118 |
+
chunk for chunk in similar_chunks
|
| 119 |
+
if chunk[1] < similarity_threshold
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
return filtered_chunks
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
print(f"Error in index search: {e}")
|
| 126 |
+
return []
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def get_index_stats(index: faiss.IndexHNSWFlat) -> Dict[str, Any]:
|
| 130 |
+
"""
|
| 131 |
+
Get statistics about the FAISS index.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
index: FAISS index
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
Dictionary with index statistics
|
| 138 |
+
"""
|
| 139 |
+
return {
|
| 140 |
+
"total_vectors": index.ntotal,
|
| 141 |
+
"dimension": index.d,
|
| 142 |
+
"index_type": type(index).__name__,
|
| 143 |
+
"ef_search": index.hnsw.efSearch,
|
| 144 |
+
"ef_construction": index.hnsw.efConstruction,
|
| 145 |
+
"is_trained": index.is_trained
|
| 146 |
+
}
|
utils/text_processing.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utility functions for text processing and embeddings.
|
| 3 |
+
|
| 4 |
+
This module contains utility functions for text processing, tokenization,
|
| 5 |
+
chunking, and embedding operations.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import List, Dict, Any, Tuple
|
| 9 |
+
import numpy as np
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
| 12 |
+
from langchain.schema import Document
|
| 13 |
+
|
| 14 |
+
from configs.config import Config
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def estimate_tokens(text: str) -> int:
|
| 18 |
+
"""
|
| 19 |
+
Estimate the number of tokens in a text (rough approximation).
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
text: Input text
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
Estimated number of tokens
|
| 26 |
+
"""
|
| 27 |
+
return len(text) // 4
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def process_pdf_file(file_path: str) -> List[Document]:
|
| 31 |
+
"""
|
| 32 |
+
Load a PDF file and extract its text with metadata.
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
file_path: Path to the PDF file
|
| 36 |
+
|
| 37 |
+
Returns:
|
| 38 |
+
List of Document objects with metadata
|
| 39 |
+
|
| 40 |
+
Raises:
|
| 41 |
+
FileNotFoundError: If the file doesn't exist
|
| 42 |
+
"""
|
| 43 |
+
import os
|
| 44 |
+
if not os.path.exists(file_path):
|
| 45 |
+
raise FileNotFoundError(f"The file {file_path} does not exist.")
|
| 46 |
+
|
| 47 |
+
loader = PyMuPDFLoader(file_path)
|
| 48 |
+
documents = loader.load()
|
| 49 |
+
return documents
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def chunk_text(documents: List[Document], max_length: int = None) -> List[Dict[str, Any]]:
|
| 53 |
+
"""
|
| 54 |
+
Split documents into chunks with metadata.
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
documents: List of Document objects
|
| 58 |
+
max_length: Maximum chunk length in tokens
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
List of chunk dictionaries with text and metadata
|
| 62 |
+
"""
|
| 63 |
+
if max_length is None:
|
| 64 |
+
max_length = Config.DEFAULT_CHUNK_SIZE
|
| 65 |
+
|
| 66 |
+
chunks = []
|
| 67 |
+
|
| 68 |
+
for doc in documents:
|
| 69 |
+
text = doc.page_content
|
| 70 |
+
metadata = doc.metadata
|
| 71 |
+
paragraphs = text.split("\n\n")
|
| 72 |
+
current_chunk = ""
|
| 73 |
+
current_metadata = metadata.copy()
|
| 74 |
+
|
| 75 |
+
for paragraph in paragraphs:
|
| 76 |
+
# Skip very short paragraphs
|
| 77 |
+
if len(paragraph.strip()) < Config.MIN_PARAGRAPH_LENGTH:
|
| 78 |
+
continue
|
| 79 |
+
|
| 80 |
+
if estimate_tokens(current_chunk + paragraph) <= max_length // 4:
|
| 81 |
+
current_chunk += paragraph + "\n\n"
|
| 82 |
+
else:
|
| 83 |
+
# Only add chunks with meaningful content
|
| 84 |
+
if current_chunk.strip() and len(current_chunk.strip()) > Config.MIN_CHUNK_LENGTH:
|
| 85 |
+
chunks.append({
|
| 86 |
+
"text": current_chunk.strip(),
|
| 87 |
+
"metadata": current_metadata
|
| 88 |
+
})
|
| 89 |
+
current_chunk = paragraph + "\n\n"
|
| 90 |
+
|
| 91 |
+
# Add the last chunk if it has meaningful content
|
| 92 |
+
if current_chunk.strip() and len(current_chunk.strip()) > Config.MIN_CHUNK_LENGTH:
|
| 93 |
+
chunks.append({
|
| 94 |
+
"text": current_chunk.strip(),
|
| 95 |
+
"metadata": current_metadata
|
| 96 |
+
})
|
| 97 |
+
|
| 98 |
+
return chunks
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def create_embeddings(chunks: List[Dict[str, Any]], model: SentenceTransformer) -> Tuple[np.ndarray, List[Dict[str, Any]]]:
|
| 102 |
+
"""
|
| 103 |
+
Create embeddings for a list of chunk texts.
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
chunks: List of chunk dictionaries
|
| 107 |
+
model: SentenceTransformer model
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
Tuple of (embeddings array, chunks)
|
| 111 |
+
"""
|
| 112 |
+
texts = [chunk["text"] for chunk in chunks]
|
| 113 |
+
embeddings = model.encode(texts, show_progress_bar=True, convert_to_tensor=True)
|
| 114 |
+
return embeddings.cpu().numpy(), chunks
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def filter_relevant_chunks(chunks_data: List[Tuple], threshold: float = None) -> List[Tuple]:
|
| 118 |
+
"""
|
| 119 |
+
Filter chunks based on similarity threshold.
|
| 120 |
+
|
| 121 |
+
Args:
|
| 122 |
+
chunks_data: List of (text, score, metadata) tuples
|
| 123 |
+
threshold: Similarity threshold (lower is more similar)
|
| 124 |
+
|
| 125 |
+
Returns:
|
| 126 |
+
Filtered list of chunks
|
| 127 |
+
"""
|
| 128 |
+
if threshold is None:
|
| 129 |
+
threshold = Config.SIMILARITY_THRESHOLD
|
| 130 |
+
|
| 131 |
+
return [chunk for chunk in chunks_data if len(chunk) >= 3 and chunk[1] < threshold]
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def prepare_context_from_chunks(context_chunks: List[Tuple], max_tokens: int = None) -> str:
|
| 135 |
+
"""
|
| 136 |
+
Prepare context string from chunk data.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
context_chunks: List of (text, score, metadata) tuples
|
| 140 |
+
max_tokens: Maximum tokens for context
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
Formatted context string
|
| 144 |
+
"""
|
| 145 |
+
if max_tokens is None:
|
| 146 |
+
max_tokens = Config.MAX_CONTEXT_TOKENS
|
| 147 |
+
|
| 148 |
+
# Sort chunks by relevance (lower distance = more relevant)
|
| 149 |
+
sorted_chunks = sorted(context_chunks, key=lambda x: x[1]) if context_chunks else []
|
| 150 |
+
|
| 151 |
+
# Filter out chunks with very high distance scores (low similarity)
|
| 152 |
+
relevant_chunks = filter_relevant_chunks(sorted_chunks)
|
| 153 |
+
|
| 154 |
+
context = ""
|
| 155 |
+
total_tokens = 0
|
| 156 |
+
|
| 157 |
+
for chunk, _, _ in relevant_chunks:
|
| 158 |
+
if chunk and chunk.strip():
|
| 159 |
+
chunk_tokens = estimate_tokens(chunk)
|
| 160 |
+
if total_tokens + chunk_tokens <= max_tokens:
|
| 161 |
+
context += chunk + "\n\n"
|
| 162 |
+
total_tokens += chunk_tokens
|
| 163 |
+
else:
|
| 164 |
+
break
|
| 165 |
+
|
| 166 |
+
return context.strip() if context else "No initial context provided from preliminary search."
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def validate_chunk_data(chunk_data: Any) -> bool:
|
| 170 |
+
"""
|
| 171 |
+
Validate chunk data structure.
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
chunk_data: Chunk data to validate
|
| 175 |
+
|
| 176 |
+
Returns:
|
| 177 |
+
True if valid, False otherwise
|
| 178 |
+
"""
|
| 179 |
+
if not isinstance(chunk_data, (list, tuple)):
|
| 180 |
+
return False
|
| 181 |
+
|
| 182 |
+
if len(chunk_data) < 3:
|
| 183 |
+
return False
|
| 184 |
+
|
| 185 |
+
text, score, metadata = chunk_data[0], chunk_data[1], chunk_data[2]
|
| 186 |
+
|
| 187 |
+
if not isinstance(text, str) or not text.strip():
|
| 188 |
+
return False
|
| 189 |
+
|
| 190 |
+
if not isinstance(score, (int, float)):
|
| 191 |
+
return False
|
| 192 |
+
|
| 193 |
+
if not isinstance(metadata, dict):
|
| 194 |
+
return False
|
| 195 |
+
|
| 196 |
+
return True
|