root
commited on
Commit
·
e3108aa
1
Parent(s):
801647a
ss
Browse files
app.py
CHANGED
|
@@ -38,19 +38,25 @@ SAMPLE_RATE = 22050 # Standard sample rate for audio processing
|
|
| 38 |
# Check CUDA availability (for informational purposes)
|
| 39 |
CUDA_AVAILABLE = ensure_cuda_availability()
|
| 40 |
|
| 41 |
-
# Load models
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
device=0 if CUDA_AVAILABLE else -1
|
| 49 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
# Configure 4-bit quantization for better performance
|
| 55 |
quantization_config = BitsAndBytesConfig(
|
| 56 |
load_in_4bit=True,
|
|
@@ -59,17 +65,19 @@ def load_llm_pipeline():
|
|
| 59 |
bnb_4bit_use_double_quant=True
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
| 65 |
device_map="auto",
|
| 66 |
trust_remote_code=True,
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
"quantization_config": quantization_config,
|
| 70 |
-
"use_cache": True
|
| 71 |
-
}
|
| 72 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
# Create music analyzer instance
|
| 75 |
music_analyzer = MusicAnalyzer()
|
|
@@ -95,17 +103,30 @@ def process_audio(audio_file):
|
|
| 95 |
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
|
| 96 |
theme = music_analysis["theme_analysis"]["primary_theme"]
|
| 97 |
|
| 98 |
-
# Use genre classification pipeline
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
# Format genre results for display
|
| 111 |
genre_results_text = format_genre_results(top_genres)
|
|
@@ -145,8 +166,9 @@ def generate_lyrics(music_analysis, genre, duration):
|
|
| 145 |
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
|
| 146 |
theme = music_analysis["theme_analysis"]["primary_theme"]
|
| 147 |
|
| 148 |
-
#
|
| 149 |
-
|
|
|
|
| 150 |
|
| 151 |
# Construct prompt for the LLM
|
| 152 |
prompt = f"""Write lyrics for a {genre} song with these specifications:
|
|
@@ -169,17 +191,36 @@ IMPORTANT INSTRUCTIONS:
|
|
| 169 |
- Keep lyrics concise enough to fit the duration when sung at the given tempo
|
| 170 |
"""
|
| 171 |
|
| 172 |
-
# Generate lyrics using the LLM
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
max_new_tokens=1024,
|
| 176 |
do_sample=True,
|
| 177 |
temperature=0.7,
|
| 178 |
top_p=0.9,
|
| 179 |
-
|
|
|
|
| 180 |
)
|
| 181 |
|
| 182 |
-
|
|
|
|
|
|
|
| 183 |
|
| 184 |
# Enhanced post-processing to remove ALL structural elements and thinking
|
| 185 |
# Remove any lines with section labels using a more comprehensive pattern
|
|
@@ -262,5 +303,4 @@ if __name__ == "__main__":
|
|
| 262 |
demo.launch()
|
| 263 |
else:
|
| 264 |
# For Hugging Face Spaces
|
| 265 |
-
app = demo
|
| 266 |
-
|
|
|
|
| 38 |
# Check CUDA availability (for informational purposes)
|
| 39 |
CUDA_AVAILABLE = ensure_cuda_availability()
|
| 40 |
|
| 41 |
+
# Load models at initialization time
|
| 42 |
+
print("Loading genre classification model...")
|
| 43 |
+
try:
|
| 44 |
+
genre_feature_extractor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
|
| 45 |
+
genre_model = AutoModelForAudioClassification.from_pretrained(
|
| 46 |
+
GENRE_MODEL_NAME,
|
| 47 |
+
device_map="auto" if CUDA_AVAILABLE else None
|
|
|
|
| 48 |
)
|
| 49 |
+
# Create a convenience wrapper function with the same interface as before
|
| 50 |
+
def get_genre_model():
|
| 51 |
+
return genre_model, genre_feature_extractor
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"Error loading genre model: {str(e)}")
|
| 54 |
+
genre_model = None
|
| 55 |
+
genre_feature_extractor = None
|
| 56 |
|
| 57 |
+
# Load LLM and tokenizer at initialization time
|
| 58 |
+
print("Loading Qwen LLM model with 4-bit quantization...")
|
| 59 |
+
try:
|
| 60 |
# Configure 4-bit quantization for better performance
|
| 61 |
quantization_config = BitsAndBytesConfig(
|
| 62 |
load_in_4bit=True,
|
|
|
|
| 65 |
bnb_4bit_use_double_quant=True
|
| 66 |
)
|
| 67 |
|
| 68 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
|
| 69 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 70 |
+
LLM_MODEL_NAME,
|
| 71 |
+
quantization_config=quantization_config,
|
| 72 |
device_map="auto",
|
| 73 |
trust_remote_code=True,
|
| 74 |
+
torch_dtype=torch.float16,
|
| 75 |
+
use_cache=True
|
|
|
|
|
|
|
|
|
|
| 76 |
)
|
| 77 |
+
except Exception as e:
|
| 78 |
+
print(f"Error loading LLM model: {str(e)}")
|
| 79 |
+
llm_tokenizer = None
|
| 80 |
+
llm_model = None
|
| 81 |
|
| 82 |
# Create music analyzer instance
|
| 83 |
music_analyzer = MusicAnalyzer()
|
|
|
|
| 103 |
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
|
| 104 |
theme = music_analysis["theme_analysis"]["primary_theme"]
|
| 105 |
|
| 106 |
+
# Use genre classification directly instead of pipeline
|
| 107 |
+
if genre_model is not None and genre_feature_extractor is not None:
|
| 108 |
+
# Resample audio to 16000 Hz for the genre model
|
| 109 |
+
y_16k = librosa.resample(y, orig_sr=sr, target_sr=16000)
|
| 110 |
+
|
| 111 |
+
# Extract features
|
| 112 |
+
inputs = genre_feature_extractor(
|
| 113 |
+
y_16k,
|
| 114 |
+
sampling_rate=16000,
|
| 115 |
+
return_tensors="pt"
|
| 116 |
+
).to(genre_model.device)
|
| 117 |
+
|
| 118 |
+
# Classify genre
|
| 119 |
+
with torch.no_grad():
|
| 120 |
+
outputs = genre_model(**inputs)
|
| 121 |
+
logits = outputs.logits
|
| 122 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 123 |
+
|
| 124 |
+
# Get top genres
|
| 125 |
+
values, indices = torch.topk(probs[0], k=5)
|
| 126 |
+
top_genres = [(genre_model.config.id2label[idx.item()], val.item()) for val, idx in zip(values, indices)]
|
| 127 |
+
else:
|
| 128 |
+
# Fallback if model loading failed
|
| 129 |
+
top_genres = [("Unknown", 1.0)]
|
| 130 |
|
| 131 |
# Format genre results for display
|
| 132 |
genre_results_text = format_genre_results(top_genres)
|
|
|
|
| 166 |
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
|
| 167 |
theme = music_analysis["theme_analysis"]["primary_theme"]
|
| 168 |
|
| 169 |
+
# Verify LLM is loaded
|
| 170 |
+
if llm_model is None or llm_tokenizer is None:
|
| 171 |
+
return "Error: LLM model not properly loaded"
|
| 172 |
|
| 173 |
# Construct prompt for the LLM
|
| 174 |
prompt = f"""Write lyrics for a {genre} song with these specifications:
|
|
|
|
| 191 |
- Keep lyrics concise enough to fit the duration when sung at the given tempo
|
| 192 |
"""
|
| 193 |
|
| 194 |
+
# Generate lyrics using the LLM model directly
|
| 195 |
+
# Format as chat message
|
| 196 |
+
messages = [
|
| 197 |
+
{"role": "user", "content": prompt}
|
| 198 |
+
]
|
| 199 |
+
|
| 200 |
+
# Apply chat template
|
| 201 |
+
text = llm_tokenizer.apply_chat_template(
|
| 202 |
+
messages,
|
| 203 |
+
tokenize=False,
|
| 204 |
+
add_generation_prompt=True
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# Tokenize and move to model device
|
| 208 |
+
model_inputs = llm_tokenizer([text], return_tensors="pt").to(llm_model.device)
|
| 209 |
+
|
| 210 |
+
# Generate with optimized parameters
|
| 211 |
+
generated_ids = llm_model.generate(
|
| 212 |
+
**model_inputs,
|
| 213 |
max_new_tokens=1024,
|
| 214 |
do_sample=True,
|
| 215 |
temperature=0.7,
|
| 216 |
top_p=0.9,
|
| 217 |
+
repetition_penalty=1.1,
|
| 218 |
+
pad_token_id=llm_tokenizer.eos_token_id
|
| 219 |
)
|
| 220 |
|
| 221 |
+
# Decode the output
|
| 222 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 223 |
+
lyrics = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
| 224 |
|
| 225 |
# Enhanced post-processing to remove ALL structural elements and thinking
|
| 226 |
# Remove any lines with section labels using a more comprehensive pattern
|
|
|
|
| 303 |
demo.launch()
|
| 304 |
else:
|
| 305 |
# For Hugging Face Spaces
|
| 306 |
+
app = demo
|
|
|