root
commited on
Commit
·
a1321b3
1
Parent(s):
1ff1aab
ss
Browse files- app.py +4 -13
- emotionanalysis.py +91 -308
app.py
CHANGED
|
@@ -98,16 +98,13 @@ def process_audio(audio_file):
|
|
| 98 |
# Basic audio information
|
| 99 |
duration = extract_audio_duration(y, sr)
|
| 100 |
|
| 101 |
-
# Detect time signature using
|
| 102 |
time_sig_result = beat_analyzer.detect_time_signature(audio_file)
|
| 103 |
time_signature = time_sig_result["time_signature"]
|
| 104 |
|
| 105 |
# Analyze music with MusicAnalyzer for emotion and theme analysis
|
| 106 |
music_analysis = music_analyzer.analyze_music(audio_file)
|
| 107 |
|
| 108 |
-
# Override MusicAnalyzer's time signature with the one detected by BeatAnalyzer
|
| 109 |
-
music_analysis["rhythm_analysis"]["estimated_time_signature"] = time_signature
|
| 110 |
-
|
| 111 |
# Extract key information
|
| 112 |
tempo = music_analysis["rhythm_analysis"]["tempo"]
|
| 113 |
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
|
|
@@ -142,15 +139,9 @@ def process_audio(audio_file):
|
|
| 142 |
genre_results_text = format_genre_results(top_genres)
|
| 143 |
primary_genre = top_genres[0][0]
|
| 144 |
|
| 145 |
-
#
|
| 146 |
-
if
|
| 147 |
-
|
| 148 |
-
time_signature = "4/4"
|
| 149 |
-
else:
|
| 150 |
-
# Ensure time signature is one of the supported ones (4/4, 3/4, 6/8)
|
| 151 |
-
if time_signature not in ["4/4", "3/4", "6/8"]:
|
| 152 |
-
time_signature = "4/4" # Default to 4/4 if unsupported
|
| 153 |
-
music_analysis["rhythm_analysis"]["estimated_time_signature"] = time_signature
|
| 154 |
|
| 155 |
# Analyze beat patterns and create lyrics template using the time signature
|
| 156 |
beat_analysis = beat_analyzer.analyze_beat_pattern(audio_file, time_signature=time_signature, auto_detect=False)
|
|
|
|
| 98 |
# Basic audio information
|
| 99 |
duration = extract_audio_duration(y, sr)
|
| 100 |
|
| 101 |
+
# Detect time signature using BeatAnalyzer
|
| 102 |
time_sig_result = beat_analyzer.detect_time_signature(audio_file)
|
| 103 |
time_signature = time_sig_result["time_signature"]
|
| 104 |
|
| 105 |
# Analyze music with MusicAnalyzer for emotion and theme analysis
|
| 106 |
music_analysis = music_analyzer.analyze_music(audio_file)
|
| 107 |
|
|
|
|
|
|
|
|
|
|
| 108 |
# Extract key information
|
| 109 |
tempo = music_analysis["rhythm_analysis"]["tempo"]
|
| 110 |
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
|
|
|
|
| 139 |
genre_results_text = format_genre_results(top_genres)
|
| 140 |
primary_genre = top_genres[0][0]
|
| 141 |
|
| 142 |
+
# Ensure time signature is one of the supported ones (4/4, 3/4, 6/8)
|
| 143 |
+
if time_signature not in ["4/4", "3/4", "6/8"]:
|
| 144 |
+
time_signature = "4/4" # Default to 4/4 if unsupported
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
# Analyze beat patterns and create lyrics template using the time signature
|
| 147 |
beat_analysis = beat_analyzer.analyze_beat_pattern(audio_file, time_signature=time_signature, auto_detect=False)
|
emotionanalysis.py
CHANGED
|
@@ -2,45 +2,46 @@ import librosa
|
|
| 2 |
import numpy as np
|
| 3 |
from scipy import signal
|
| 4 |
from collections import Counter
|
|
|
|
|
|
|
| 5 |
try:
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
except ImportError:
|
| 8 |
plt = None
|
| 9 |
-
from scipy.stats import mode
|
| 10 |
-
import warnings
|
| 11 |
-
warnings.filterwarnings('ignore') # Suppress librosa warnings
|
| 12 |
-
from beat_analysis import BeatAnalyzer # Import BeatAnalyzer for rhythm analysis
|
| 13 |
|
| 14 |
class MusicAnalyzer:
|
| 15 |
def __init__(self):
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
'
|
| 22 |
-
'
|
| 23 |
-
'
|
| 24 |
-
'
|
| 25 |
-
'
|
| 26 |
-
'
|
| 27 |
}
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
'
|
| 32 |
-
'
|
| 33 |
-
'
|
| 34 |
-
'
|
| 35 |
-
'
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
}
|
| 38 |
-
|
| 39 |
-
# Musical key mapping
|
| 40 |
self.key_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
|
| 41 |
|
| 42 |
def load_audio(self, file_path, sr=22050, duration=None):
|
| 43 |
-
"""Load audio file and return time series and sample rate"""
|
| 44 |
try:
|
| 45 |
y, sr = librosa.load(file_path, sr=sr, duration=duration)
|
| 46 |
return y, sr
|
|
@@ -49,102 +50,50 @@ class MusicAnalyzer:
|
|
| 49 |
return None, None
|
| 50 |
|
| 51 |
def analyze_rhythm(self, y, sr):
|
| 52 |
-
"""Analyze rhythm-related features: tempo, beats, time signature"""
|
| 53 |
-
# Tempo and beat detection
|
| 54 |
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
|
| 55 |
tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
|
| 56 |
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
|
| 57 |
-
|
| 58 |
-
# Beat intervals and regularity
|
| 59 |
beat_intervals = np.diff(beat_times) if len(beat_times) > 1 else np.array([0])
|
| 60 |
beat_regularity = 1.0 / np.std(beat_intervals) if len(beat_intervals) > 0 and np.std(beat_intervals) > 0 else 0
|
| 61 |
-
|
| 62 |
-
# Rhythm pattern analysis through autocorrelation
|
| 63 |
ac = librosa.autocorrelate(onset_env, max_size=sr // 2)
|
| 64 |
ac = librosa.util.normalize(ac, norm=np.inf)
|
| 65 |
-
|
| 66 |
-
# Use BeatAnalyzer for advanced time signature detection
|
| 67 |
-
# We need to save the audio temporarily to use the BeatAnalyzer method
|
| 68 |
-
import tempfile
|
| 69 |
-
import soundfile as sf
|
| 70 |
-
|
| 71 |
-
# Create a temporary file
|
| 72 |
-
with tempfile.NamedTemporaryFile(suffix='.wav', delete=True) as temp_file:
|
| 73 |
-
sf.write(temp_file.name, y, sr)
|
| 74 |
-
# Use BeatAnalyzer's advanced time signature detection
|
| 75 |
-
time_sig_result = self.beat_analyzer.detect_time_signature(temp_file.name)
|
| 76 |
-
|
| 77 |
-
# Extract results from the time signature detection
|
| 78 |
-
estimated_signature = time_sig_result["time_signature"]
|
| 79 |
-
time_sig_confidence = time_sig_result["confidence"]
|
| 80 |
-
|
| 81 |
-
# Compute onset strength to get a measure of rhythm intensity
|
| 82 |
rhythm_intensity = np.mean(onset_env) / np.max(onset_env) if np.max(onset_env) > 0 else 0
|
| 83 |
-
|
| 84 |
-
# Rhythm complexity based on variation in onset strength
|
| 85 |
rhythm_complexity = np.std(onset_env) / np.mean(onset_env) if np.mean(onset_env) > 0 else 0
|
| 86 |
-
|
| 87 |
-
# Convert numpy arrays to regular Python types for JSON serialization
|
| 88 |
beat_times_list = [float(t) for t in beat_times.tolist()]
|
| 89 |
beat_intervals_list = [float(i) for i in beat_intervals.tolist()]
|
| 90 |
-
|
| 91 |
return {
|
| 92 |
"tempo": float(tempo),
|
| 93 |
"beat_times": beat_times_list,
|
| 94 |
"beat_intervals": beat_intervals_list,
|
| 95 |
"beat_regularity": float(beat_regularity),
|
| 96 |
"rhythm_intensity": float(rhythm_intensity),
|
| 97 |
-
"rhythm_complexity": float(rhythm_complexity)
|
| 98 |
-
"estimated_time_signature": estimated_signature,
|
| 99 |
-
"time_signature_confidence": float(time_sig_confidence),
|
| 100 |
-
"time_signature_candidates": time_sig_result.get("all_candidates", {})
|
| 101 |
}
|
| 102 |
|
| 103 |
def analyze_tonality(self, y, sr):
|
| 104 |
-
"""Analyze tonal features: key, mode, harmonic features"""
|
| 105 |
-
# Compute chromagram
|
| 106 |
chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
|
| 107 |
-
|
| 108 |
-
# Krumhansl-Schmuckler key-finding algorithm (simplified)
|
| 109 |
-
# Major and minor profiles from music theory research
|
| 110 |
major_profile = np.array([6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88])
|
| 111 |
minor_profile = np.array([6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17])
|
| 112 |
-
|
| 113 |
-
# Calculate the correlation of the chroma with each key profile
|
| 114 |
chroma_avg = np.mean(chroma, axis=1)
|
| 115 |
major_corr = np.zeros(12)
|
| 116 |
minor_corr = np.zeros(12)
|
| 117 |
-
|
| 118 |
for i in range(12):
|
| 119 |
major_corr[i] = np.corrcoef(np.roll(chroma_avg, i), major_profile)[0, 1]
|
| 120 |
minor_corr[i] = np.corrcoef(np.roll(chroma_avg, i), minor_profile)[0, 1]
|
| 121 |
-
|
| 122 |
-
# Find the key with the highest correlation
|
| 123 |
max_major_idx = np.argmax(major_corr)
|
| 124 |
max_minor_idx = np.argmax(minor_corr)
|
| 125 |
-
|
| 126 |
-
# Determine if the piece is in a major or minor key
|
| 127 |
if major_corr[max_major_idx] > minor_corr[max_minor_idx]:
|
| 128 |
mode = "major"
|
| 129 |
key = self.key_names[max_major_idx]
|
| 130 |
else:
|
| 131 |
mode = "minor"
|
| 132 |
key = self.key_names[max_minor_idx]
|
| 133 |
-
|
| 134 |
-
# Calculate harmony complexity (variability in harmonic content)
|
| 135 |
harmony_complexity = np.std(chroma) / np.mean(chroma) if np.mean(chroma) > 0 else 0
|
| 136 |
-
|
| 137 |
-
# Calculate tonal stability (consistency of tonal center)
|
| 138 |
-
tonal_stability = 1.0 / (np.std(chroma_avg) + 0.001) # Add small value to avoid division by zero
|
| 139 |
-
|
| 140 |
-
# Calculate spectral brightness (center of mass of the spectrum)
|
| 141 |
spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
|
| 142 |
-
brightness = np.mean(spectral_centroid) / (sr/2)
|
| 143 |
-
|
| 144 |
-
# Calculate dissonance using spectral contrast
|
| 145 |
spectral_contrast = librosa.feature.spectral_contrast(y=y, sr=sr)
|
| 146 |
-
dissonance = np.mean(spectral_contrast[0])
|
| 147 |
-
|
| 148 |
return {
|
| 149 |
"key": key,
|
| 150 |
"mode": mode,
|
|
@@ -156,33 +105,22 @@ class MusicAnalyzer:
|
|
| 156 |
}
|
| 157 |
|
| 158 |
def analyze_energy(self, y, sr):
|
| 159 |
-
"""Analyze energy characteristics of the audio"""
|
| 160 |
-
# RMS Energy (overall loudness)
|
| 161 |
rms = librosa.feature.rms(y=y)[0]
|
| 162 |
-
|
| 163 |
-
# Energy metrics
|
| 164 |
mean_energy = np.mean(rms)
|
| 165 |
energy_std = np.std(rms)
|
| 166 |
energy_dynamic_range = np.max(rms) - np.min(rms) if len(rms) > 0 else 0
|
| 167 |
-
|
| 168 |
-
# Energy distribution across frequency ranges
|
| 169 |
spec = np.abs(librosa.stft(y))
|
| 170 |
-
|
| 171 |
-
# Divide the spectrum into low, mid, and high ranges
|
| 172 |
freq_bins = spec.shape[0]
|
| 173 |
-
low_freq_energy = np.mean(spec[:int(freq_bins*0.2), :])
|
| 174 |
-
mid_freq_energy = np.mean(spec[int(freq_bins*0.2):int(freq_bins*0.8), :])
|
| 175 |
-
high_freq_energy = np.mean(spec[int(freq_bins*0.8):, :])
|
| 176 |
-
|
| 177 |
-
# Normalize to create a distribution
|
| 178 |
total_energy = low_freq_energy + mid_freq_energy + high_freq_energy
|
| 179 |
if total_energy > 0:
|
| 180 |
low_freq_ratio = low_freq_energy / total_energy
|
| 181 |
mid_freq_ratio = mid_freq_energy / total_energy
|
| 182 |
high_freq_ratio = high_freq_energy / total_energy
|
| 183 |
else:
|
| 184 |
-
low_freq_ratio = mid_freq_ratio = high_freq_ratio = 1/3
|
| 185 |
-
|
| 186 |
return {
|
| 187 |
"mean_energy": float(mean_energy),
|
| 188 |
"energy_std": float(energy_std),
|
|
@@ -194,160 +132,86 @@ class MusicAnalyzer:
|
|
| 194 |
}
|
| 195 |
}
|
| 196 |
|
| 197 |
-
def
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
emotion_scores = {}
|
| 207 |
-
for emotion,
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
# Tempo contribution (0-1 score)
|
| 211 |
-
tempo_range = profile["tempo"]
|
| 212 |
-
if tempo_range[0] <= tempo <= tempo_range[1]:
|
| 213 |
-
score += 1.0
|
| 214 |
-
else:
|
| 215 |
-
# Partial score based on distance
|
| 216 |
-
distance = min(abs(tempo - tempo_range[0]), abs(tempo - tempo_range[1]))
|
| 217 |
-
max_distance = 40 # Maximum distance to consider
|
| 218 |
-
score += max(0, 1 - (distance / max_distance))
|
| 219 |
-
|
| 220 |
-
# Energy contribution (0-1 score)
|
| 221 |
-
energy_range = profile["energy"]
|
| 222 |
-
if energy_range[0] <= energy <= energy_range[1]:
|
| 223 |
-
score += 1.0
|
| 224 |
-
else:
|
| 225 |
-
# Partial score based on distance
|
| 226 |
-
distance = min(abs(energy - energy_range[0]), abs(energy - energy_range[1]))
|
| 227 |
-
max_distance = 0.5 # Maximum distance to consider
|
| 228 |
-
score += max(0, 1 - (distance / max_distance))
|
| 229 |
-
|
| 230 |
-
# Mode contribution (0-1 score)
|
| 231 |
-
if profile["major_mode"] is not None: # Some emotions don't have strong mode preference
|
| 232 |
-
score += 1.0 if profile["major_mode"] == is_major else 0.0
|
| 233 |
-
else:
|
| 234 |
-
score += 0.5 # Neutral contribution
|
| 235 |
-
|
| 236 |
-
# Brightness contribution (0-1 score)
|
| 237 |
-
brightness_range = profile["brightness"]
|
| 238 |
-
if brightness_range[0] <= brightness <= brightness_range[1]:
|
| 239 |
-
score += 1.0
|
| 240 |
-
else:
|
| 241 |
-
# Partial score based on distance
|
| 242 |
-
distance = min(abs(brightness - brightness_range[0]), abs(brightness - brightness_range[1]))
|
| 243 |
-
max_distance = 0.5 # Maximum distance to consider
|
| 244 |
-
score += max(0, 1 - (distance / max_distance))
|
| 245 |
-
|
| 246 |
-
# Normalize score (0-1 range)
|
| 247 |
-
emotion_scores[emotion] = score / 4.0
|
| 248 |
-
|
| 249 |
-
# Find primary emotion
|
| 250 |
primary_emotion = max(emotion_scores.items(), key=lambda x: x[1])
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
# Mapping different emotions to valence-arousal space
|
| 254 |
-
valence_map = {
|
| 255 |
-
'happy': 0.8, 'sad': 0.2, 'calm': 0.6,
|
| 256 |
-
'energetic': 0.7, 'tense': 0.3, 'nostalgic': 0.5
|
| 257 |
-
}
|
| 258 |
-
|
| 259 |
-
arousal_map = {
|
| 260 |
-
'happy': 0.7, 'sad': 0.3, 'calm': 0.2,
|
| 261 |
-
'energetic': 0.9, 'tense': 0.8, 'nostalgic': 0.4
|
| 262 |
-
}
|
| 263 |
-
|
| 264 |
-
# Calculate weighted valence and arousal
|
| 265 |
-
total_weight = sum(emotion_scores.values())
|
| 266 |
-
if total_weight > 0:
|
| 267 |
-
valence = sum(score * valence_map[emotion] for emotion, score in emotion_scores.items()) / total_weight
|
| 268 |
-
arousal = sum(score * arousal_map[emotion] for emotion, score in emotion_scores.items()) / total_weight
|
| 269 |
-
else:
|
| 270 |
-
valence = 0.5
|
| 271 |
-
arousal = 0.5
|
| 272 |
-
|
| 273 |
return {
|
| 274 |
"primary_emotion": primary_emotion[0],
|
| 275 |
-
"confidence": primary_emotion[1],
|
| 276 |
-
"emotion_scores": emotion_scores,
|
| 277 |
-
"valence":
|
| 278 |
-
"arousal":
|
|
|
|
| 279 |
}
|
| 280 |
|
| 281 |
def analyze_theme(self, rhythm_data, tonal_data, emotion_data):
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
primary_emotion = emotion_data["primary_emotion"]
|
| 285 |
-
harmony_complexity = tonal_data["harmony_complexity"]
|
| 286 |
-
|
| 287 |
-
# Calculate theme scores
|
| 288 |
theme_scores = {}
|
| 289 |
-
for theme,
|
| 290 |
score = 0.0
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
if
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
for emotion in secondary_emotions:
|
| 302 |
-
if emotion in profile["emotion"]:
|
| 303 |
-
score += 0.3 # Less weight than primary emotion
|
| 304 |
-
|
| 305 |
-
# Harmony complexity contribution
|
| 306 |
-
complexity_range = profile["harmony_complexity"]
|
| 307 |
-
if complexity_range[0] <= harmony_complexity <= complexity_range[1]:
|
| 308 |
-
score += 1.0
|
| 309 |
-
else:
|
| 310 |
-
# Partial score based on distance
|
| 311 |
-
distance = min(abs(harmony_complexity - complexity_range[0]),
|
| 312 |
-
abs(harmony_complexity - complexity_range[1]))
|
| 313 |
-
max_distance = 0.5 # Maximum distance to consider
|
| 314 |
-
score += max(0, 1 - (distance / max_distance))
|
| 315 |
-
|
| 316 |
-
# Normalize score
|
| 317 |
-
theme_scores[theme] = min(1.0, score / 2.5)
|
| 318 |
-
|
| 319 |
-
# Find primary theme
|
| 320 |
primary_theme = max(theme_scores.items(), key=lambda x: x[1])
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
secondary_themes = [(theme, score) for theme, score in theme_scores.items()
|
| 324 |
-
if score > 0.5 and theme != primary_theme[0]]
|
| 325 |
-
secondary_themes.sort(key=lambda x: x[1], reverse=True)
|
| 326 |
-
|
| 327 |
return {
|
| 328 |
"primary_theme": primary_theme[0],
|
| 329 |
"confidence": primary_theme[1],
|
| 330 |
-
"secondary_themes":
|
| 331 |
"theme_scores": theme_scores
|
| 332 |
}
|
| 333 |
|
| 334 |
def analyze_music(self, file_path):
|
| 335 |
-
"""Main function to perform comprehensive music analysis"""
|
| 336 |
-
# Load the audio file
|
| 337 |
y, sr = self.load_audio(file_path)
|
| 338 |
if y is None:
|
| 339 |
return {"error": "Failed to load audio file"}
|
| 340 |
-
|
| 341 |
-
# Run all analyses
|
| 342 |
rhythm_data = self.analyze_rhythm(y, sr)
|
| 343 |
tonal_data = self.analyze_tonality(y, sr)
|
| 344 |
energy_data = self.analyze_energy(y, sr)
|
| 345 |
-
|
| 346 |
-
# Higher-level analyses that depend on the basic features
|
| 347 |
emotion_data = self.analyze_emotion(rhythm_data, tonal_data, energy_data)
|
| 348 |
theme_data = self.analyze_theme(rhythm_data, tonal_data, emotion_data)
|
| 349 |
-
|
| 350 |
-
# Convert any remaining numpy values to native Python types
|
| 351 |
def convert_numpy_to_python(obj):
|
| 352 |
if isinstance(obj, dict):
|
| 353 |
return {k: convert_numpy_to_python(v) for k, v in obj.items()}
|
|
@@ -359,15 +223,11 @@ class MusicAnalyzer:
|
|
| 359 |
return float(obj)
|
| 360 |
else:
|
| 361 |
return obj
|
| 362 |
-
|
| 363 |
-
# Ensure all numpy values are converted
|
| 364 |
rhythm_data = convert_numpy_to_python(rhythm_data)
|
| 365 |
tonal_data = convert_numpy_to_python(tonal_data)
|
| 366 |
energy_data = convert_numpy_to_python(energy_data)
|
| 367 |
emotion_data = convert_numpy_to_python(emotion_data)
|
| 368 |
theme_data = convert_numpy_to_python(theme_data)
|
| 369 |
-
|
| 370 |
-
# Combine all results
|
| 371 |
return {
|
| 372 |
"file": file_path,
|
| 373 |
"rhythm_analysis": rhythm_data,
|
|
@@ -377,83 +237,11 @@ class MusicAnalyzer:
|
|
| 377 |
"theme_analysis": theme_data,
|
| 378 |
"summary": {
|
| 379 |
"tempo": float(rhythm_data["tempo"]),
|
| 380 |
-
"time_signature": rhythm_data["estimated_time_signature"],
|
| 381 |
-
"key": tonal_data["key"],
|
| 382 |
-
"mode": tonal_data["mode"],
|
| 383 |
"primary_emotion": emotion_data["primary_emotion"],
|
| 384 |
"primary_theme": theme_data["primary_theme"]
|
| 385 |
}
|
| 386 |
}
|
| 387 |
|
| 388 |
-
# def visualize_analysis(self, file_path):
|
| 389 |
-
# """Create visualizations for the music analysis results"""
|
| 390 |
-
# # Check if matplotlib is available
|
| 391 |
-
# if plt is None:
|
| 392 |
-
# print("Error: matplotlib is not installed. Visualization is not available.")
|
| 393 |
-
# return
|
| 394 |
-
#
|
| 395 |
-
# # Load audio and run analysis
|
| 396 |
-
# y, sr = self.load_audio(file_path)
|
| 397 |
-
# if y is None:
|
| 398 |
-
# print("Error: Failed to load audio file")
|
| 399 |
-
# return
|
| 400 |
-
#
|
| 401 |
-
# results = self.analyze_music(file_path)
|
| 402 |
-
#
|
| 403 |
-
# # Create visualization
|
| 404 |
-
# plt.figure(figsize=(15, 12))
|
| 405 |
-
|
| 406 |
-
# # Waveform
|
| 407 |
-
# plt.subplot(3, 2, 1)
|
| 408 |
-
# librosa.display.waveshow(y, sr=sr, alpha=0.6)
|
| 409 |
-
# plt.title(f'Waveform (Tempo: {results["rhythm_analysis"]["tempo"]:.1f} BPM)')
|
| 410 |
-
|
| 411 |
-
# # Spectrogram
|
| 412 |
-
# plt.subplot(3, 2, 2)
|
| 413 |
-
# D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
|
| 414 |
-
# librosa.display.specshow(D, sr=sr, x_axis='time', y_axis='log')
|
| 415 |
-
# plt.colorbar(format='%+2.0f dB')
|
| 416 |
-
# plt.title(f'Spectrogram (Key: {results["tonal_analysis"]["key"]} {results["tonal_analysis"]["mode"]})')
|
| 417 |
-
|
| 418 |
-
# # Chromagram
|
| 419 |
-
# plt.subplot(3, 2, 3)
|
| 420 |
-
# chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
|
| 421 |
-
# librosa.display.specshow(chroma, y_axis='chroma', x_axis='time')
|
| 422 |
-
# plt.colorbar()
|
| 423 |
-
# plt.title('Chromagram')
|
| 424 |
-
|
| 425 |
-
# # Onset strength and beats
|
| 426 |
-
# plt.subplot(3, 2, 4)
|
| 427 |
-
# onset_env = librosa.onset.onset_strength(y=y, sr=sr)
|
| 428 |
-
# times = librosa.times_like(onset_env, sr=sr)
|
| 429 |
-
# plt.plot(times, librosa.util.normalize(onset_env), label='Onset strength')
|
| 430 |
-
# plt.vlines(results["rhythm_analysis"]["beat_times"], 0, 1, alpha=0.5, color='r',
|
| 431 |
-
# linestyle='--', label='Beats')
|
| 432 |
-
# plt.legend()
|
| 433 |
-
# plt.title('Rhythm Analysis')
|
| 434 |
-
|
| 435 |
-
# # Emotion scores
|
| 436 |
-
# plt.subplot(3, 2, 5)
|
| 437 |
-
# emotions = list(results["emotion_analysis"]["emotion_scores"].keys())
|
| 438 |
-
# scores = list(results["emotion_analysis"]["emotion_scores"].values())
|
| 439 |
-
# plt.bar(emotions, scores, color='skyblue')
|
| 440 |
-
# plt.ylim(0, 1)
|
| 441 |
-
# plt.title(f'Emotion Analysis (Primary: {results["emotion_analysis"]["primary_emotion"]})')
|
| 442 |
-
# plt.xticks(rotation=45)
|
| 443 |
-
|
| 444 |
-
# # Theme scores
|
| 445 |
-
# plt.subplot(3, 2, 6)
|
| 446 |
-
# themes = list(results["theme_analysis"]["theme_scores"].keys())
|
| 447 |
-
# scores = list(results["theme_analysis"]["theme_scores"].values())
|
| 448 |
-
# plt.bar(themes, scores, color='lightgreen')
|
| 449 |
-
# plt.ylim(0, 1)
|
| 450 |
-
# plt.title(f'Theme Analysis (Primary: {results["theme_analysis"]["primary_theme"]})')
|
| 451 |
-
# plt.xticks(rotation=45)
|
| 452 |
-
|
| 453 |
-
# plt.tight_layout()
|
| 454 |
-
# plt.show()
|
| 455 |
-
|
| 456 |
-
|
| 457 |
# Create an instance of the analyzer
|
| 458 |
analyzer = MusicAnalyzer()
|
| 459 |
|
|
@@ -469,15 +257,10 @@ if __name__ == "__main__":
|
|
| 469 |
# Print analysis summary
|
| 470 |
print("\n=== MUSIC ANALYSIS SUMMARY ===")
|
| 471 |
print(f"Tempo: {results['summary']['tempo']:.1f} BPM")
|
| 472 |
-
print(f"Time Signature: {results['summary']['time_signature']}")
|
| 473 |
-
print(f"Key: {results['summary']['key']} {results['summary']['mode']}")
|
| 474 |
print(f"Primary Emotion: {results['summary']['primary_emotion']}")
|
| 475 |
print(f"Primary Theme: {results['summary']['primary_theme']}")
|
| 476 |
|
| 477 |
# Show detailed results (optional)
|
| 478 |
import json
|
| 479 |
print("\n=== DETAILED ANALYSIS ===")
|
| 480 |
-
print(json.dumps(results, indent=2))
|
| 481 |
-
|
| 482 |
-
# Visualize the analysis
|
| 483 |
-
# analyzer.visualize_analysis(demo_file)
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
from scipy import signal
|
| 4 |
from collections import Counter
|
| 5 |
+
import warnings
|
| 6 |
+
warnings.filterwarnings('ignore') # Suppress librosa warnings
|
| 7 |
try:
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
except ImportError:
|
| 10 |
plt = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
class MusicAnalyzer:
|
| 13 |
def __init__(self):
|
| 14 |
+
# Scientifically grounded emotion classes (valence, arousal space)
|
| 15 |
+
# See: Eerola & Vuoskoski, 2011; Russell, 1980
|
| 16 |
+
self.emotion_classes = {
|
| 17 |
+
'happy': {'valence': 0.9, 'arousal': 0.7},
|
| 18 |
+
'excited': {'valence': 0.8, 'arousal': 0.95},
|
| 19 |
+
'tender': {'valence': 0.7, 'arousal': 0.3},
|
| 20 |
+
'calm': {'valence': 0.65, 'arousal': 0.15},
|
| 21 |
+
'sad': {'valence': 0.2, 'arousal': 0.25},
|
| 22 |
+
'depressed': {'valence': 0.05, 'arousal': 0.05},
|
| 23 |
+
'angry': {'valence': 0.1, 'arousal': 0.8},
|
| 24 |
+
'fearful': {'valence': 0.05, 'arousal': 0.95}
|
| 25 |
}
|
| 26 |
+
# Theme classes based on emotion clusters (from Allan, 2014, with mapping)
|
| 27 |
+
self.theme_classes = {
|
| 28 |
+
'love': ['tender', 'calm', 'happy'],
|
| 29 |
+
'triumph': ['excited', 'happy', 'angry'],
|
| 30 |
+
'loss': ['sad', 'depressed'],
|
| 31 |
+
'adventure': ['excited', 'fearful'],
|
| 32 |
+
'reflection': ['calm', 'sad'],
|
| 33 |
+
'conflict': ['angry', 'fearful']
|
| 34 |
+
}
|
| 35 |
+
self.feature_weights = {
|
| 36 |
+
'mode': 0.25,
|
| 37 |
+
'tempo': 0.2,
|
| 38 |
+
'energy': 0.2,
|
| 39 |
+
'brightness': 0.2,
|
| 40 |
+
'rhythm_complexity': 0.15
|
| 41 |
}
|
|
|
|
|
|
|
| 42 |
self.key_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
|
| 43 |
|
| 44 |
def load_audio(self, file_path, sr=22050, duration=None):
|
|
|
|
| 45 |
try:
|
| 46 |
y, sr = librosa.load(file_path, sr=sr, duration=duration)
|
| 47 |
return y, sr
|
|
|
|
| 50 |
return None, None
|
| 51 |
|
| 52 |
def analyze_rhythm(self, y, sr):
|
|
|
|
|
|
|
| 53 |
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
|
| 54 |
tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
|
| 55 |
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
|
|
|
|
|
|
|
| 56 |
beat_intervals = np.diff(beat_times) if len(beat_times) > 1 else np.array([0])
|
| 57 |
beat_regularity = 1.0 / np.std(beat_intervals) if len(beat_intervals) > 0 and np.std(beat_intervals) > 0 else 0
|
|
|
|
|
|
|
| 58 |
ac = librosa.autocorrelate(onset_env, max_size=sr // 2)
|
| 59 |
ac = librosa.util.normalize(ac, norm=np.inf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
rhythm_intensity = np.mean(onset_env) / np.max(onset_env) if np.max(onset_env) > 0 else 0
|
|
|
|
|
|
|
| 61 |
rhythm_complexity = np.std(onset_env) / np.mean(onset_env) if np.mean(onset_env) > 0 else 0
|
|
|
|
|
|
|
| 62 |
beat_times_list = [float(t) for t in beat_times.tolist()]
|
| 63 |
beat_intervals_list = [float(i) for i in beat_intervals.tolist()]
|
|
|
|
| 64 |
return {
|
| 65 |
"tempo": float(tempo),
|
| 66 |
"beat_times": beat_times_list,
|
| 67 |
"beat_intervals": beat_intervals_list,
|
| 68 |
"beat_regularity": float(beat_regularity),
|
| 69 |
"rhythm_intensity": float(rhythm_intensity),
|
| 70 |
+
"rhythm_complexity": float(rhythm_complexity)
|
|
|
|
|
|
|
|
|
|
| 71 |
}
|
| 72 |
|
| 73 |
def analyze_tonality(self, y, sr):
|
|
|
|
|
|
|
| 74 |
chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
|
|
|
|
|
|
|
|
|
|
| 75 |
major_profile = np.array([6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88])
|
| 76 |
minor_profile = np.array([6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17])
|
|
|
|
|
|
|
| 77 |
chroma_avg = np.mean(chroma, axis=1)
|
| 78 |
major_corr = np.zeros(12)
|
| 79 |
minor_corr = np.zeros(12)
|
|
|
|
| 80 |
for i in range(12):
|
| 81 |
major_corr[i] = np.corrcoef(np.roll(chroma_avg, i), major_profile)[0, 1]
|
| 82 |
minor_corr[i] = np.corrcoef(np.roll(chroma_avg, i), minor_profile)[0, 1]
|
|
|
|
|
|
|
| 83 |
max_major_idx = np.argmax(major_corr)
|
| 84 |
max_minor_idx = np.argmax(minor_corr)
|
|
|
|
|
|
|
| 85 |
if major_corr[max_major_idx] > minor_corr[max_minor_idx]:
|
| 86 |
mode = "major"
|
| 87 |
key = self.key_names[max_major_idx]
|
| 88 |
else:
|
| 89 |
mode = "minor"
|
| 90 |
key = self.key_names[max_minor_idx]
|
|
|
|
|
|
|
| 91 |
harmony_complexity = np.std(chroma) / np.mean(chroma) if np.mean(chroma) > 0 else 0
|
| 92 |
+
tonal_stability = 1.0 / (np.std(chroma_avg) + 0.001)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
|
| 94 |
+
brightness = np.mean(spectral_centroid) / (sr / 2)
|
|
|
|
|
|
|
| 95 |
spectral_contrast = librosa.feature.spectral_contrast(y=y, sr=sr)
|
| 96 |
+
dissonance = np.mean(spectral_contrast[0])
|
|
|
|
| 97 |
return {
|
| 98 |
"key": key,
|
| 99 |
"mode": mode,
|
|
|
|
| 105 |
}
|
| 106 |
|
| 107 |
def analyze_energy(self, y, sr):
|
|
|
|
|
|
|
| 108 |
rms = librosa.feature.rms(y=y)[0]
|
|
|
|
|
|
|
| 109 |
mean_energy = np.mean(rms)
|
| 110 |
energy_std = np.std(rms)
|
| 111 |
energy_dynamic_range = np.max(rms) - np.min(rms) if len(rms) > 0 else 0
|
|
|
|
|
|
|
| 112 |
spec = np.abs(librosa.stft(y))
|
|
|
|
|
|
|
| 113 |
freq_bins = spec.shape[0]
|
| 114 |
+
low_freq_energy = np.mean(spec[:int(freq_bins * 0.2), :])
|
| 115 |
+
mid_freq_energy = np.mean(spec[int(freq_bins * 0.2):int(freq_bins * 0.8), :])
|
| 116 |
+
high_freq_energy = np.mean(spec[int(freq_bins * 0.8):, :])
|
|
|
|
|
|
|
| 117 |
total_energy = low_freq_energy + mid_freq_energy + high_freq_energy
|
| 118 |
if total_energy > 0:
|
| 119 |
low_freq_ratio = low_freq_energy / total_energy
|
| 120 |
mid_freq_ratio = mid_freq_energy / total_energy
|
| 121 |
high_freq_ratio = high_freq_energy / total_energy
|
| 122 |
else:
|
| 123 |
+
low_freq_ratio = mid_freq_ratio = high_freq_ratio = 1 / 3
|
|
|
|
| 124 |
return {
|
| 125 |
"mean_energy": float(mean_energy),
|
| 126 |
"energy_std": float(energy_std),
|
|
|
|
| 132 |
}
|
| 133 |
}
|
| 134 |
|
| 135 |
+
def feature_to_valence_arousal(self, features):
|
| 136 |
+
# Normalize features to [0, 1]
|
| 137 |
+
tempo_norm = np.clip((features['tempo'] - 40) / (200 - 40), 0, 1)
|
| 138 |
+
energy_norm = np.clip(features['energy'] / 1.0, 0, 1)
|
| 139 |
+
brightness_norm = np.clip(features['brightness'] / 1.0, 0, 1)
|
| 140 |
+
rhythm_complexity_norm = np.clip(features['rhythm_complexity'] / 2.0, 0, 1)
|
| 141 |
+
valence = (
|
| 142 |
+
self.feature_weights['mode'] * (1.0 if features['is_major'] else 0.0) +
|
| 143 |
+
self.feature_weights['tempo'] * tempo_norm +
|
| 144 |
+
self.feature_weights['energy'] * energy_norm +
|
| 145 |
+
self.feature_weights['brightness'] * brightness_norm
|
| 146 |
+
)
|
| 147 |
+
arousal = (
|
| 148 |
+
self.feature_weights['tempo'] * tempo_norm +
|
| 149 |
+
self.feature_weights['energy'] * energy_norm +
|
| 150 |
+
self.feature_weights['brightness'] * brightness_norm +
|
| 151 |
+
self.feature_weights['rhythm_complexity'] * rhythm_complexity_norm
|
| 152 |
+
)
|
| 153 |
+
return float(np.clip(valence, 0, 1)), float(np.clip(arousal, 0, 1))
|
| 154 |
|
| 155 |
+
def analyze_emotion(self, rhythm_data, tonal_data, energy_data):
|
| 156 |
+
features = {
|
| 157 |
+
'tempo': rhythm_data['tempo'],
|
| 158 |
+
'energy': energy_data['mean_energy'],
|
| 159 |
+
'is_major': tonal_data['is_major'],
|
| 160 |
+
'brightness': tonal_data['brightness'],
|
| 161 |
+
'rhythm_complexity': rhythm_data['rhythm_complexity']
|
| 162 |
+
}
|
| 163 |
+
valence, arousal = self.feature_to_valence_arousal(features)
|
| 164 |
emotion_scores = {}
|
| 165 |
+
for emotion, va in self.emotion_classes.items():
|
| 166 |
+
dist = np.sqrt((valence - va['valence']) ** 2 + (arousal - va['arousal']) ** 2)
|
| 167 |
+
emotion_scores[emotion] = 1.0 - dist # Higher = closer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
primary_emotion = max(emotion_scores.items(), key=lambda x: x[1])
|
| 169 |
+
sorted_emotions = sorted(emotion_scores.items(), key=lambda x: x[1], reverse=True)
|
| 170 |
+
secondary_emotion = sorted_emotions[1][0] if len(sorted_emotions) > 1 else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
return {
|
| 172 |
"primary_emotion": primary_emotion[0],
|
| 173 |
+
"confidence": float(primary_emotion[1]),
|
| 174 |
+
"emotion_scores": {k: float(v) for k, v in emotion_scores.items()},
|
| 175 |
+
"valence": valence,
|
| 176 |
+
"arousal": arousal,
|
| 177 |
+
"secondary_emotion": secondary_emotion
|
| 178 |
}
|
| 179 |
|
| 180 |
def analyze_theme(self, rhythm_data, tonal_data, emotion_data):
|
| 181 |
+
primary_emotion = emotion_data['primary_emotion']
|
| 182 |
+
secondary_emotion = emotion_data.get('secondary_emotion')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
theme_scores = {}
|
| 184 |
+
for theme, emolist in self.theme_classes.items():
|
| 185 |
score = 0.0
|
| 186 |
+
if primary_emotion in emolist:
|
| 187 |
+
score += 0.7
|
| 188 |
+
if secondary_emotion in emolist:
|
| 189 |
+
score += 0.3
|
| 190 |
+
harmony_complexity = tonal_data.get('harmony_complexity', 0.5)
|
| 191 |
+
if theme in ['adventure', 'conflict']:
|
| 192 |
+
score += 0.3 * np.clip((harmony_complexity - 0.4) / 0.6, 0, 1)
|
| 193 |
+
elif theme in ['love', 'reflection']:
|
| 194 |
+
score += 0.3 * np.clip((0.6 - harmony_complexity) / 0.6, 0, 1)
|
| 195 |
+
theme_scores[theme] = float(np.clip(score, 0, 1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
primary_theme = max(theme_scores.items(), key=lambda x: x[1])
|
| 197 |
+
secondary_themes = [k for k, v in sorted(theme_scores.items(), key=lambda x: x[1], reverse=True)
|
| 198 |
+
if k != primary_theme[0] and v > 0.5]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
return {
|
| 200 |
"primary_theme": primary_theme[0],
|
| 201 |
"confidence": primary_theme[1],
|
| 202 |
+
"secondary_themes": secondary_themes[:2],
|
| 203 |
"theme_scores": theme_scores
|
| 204 |
}
|
| 205 |
|
| 206 |
def analyze_music(self, file_path):
|
|
|
|
|
|
|
| 207 |
y, sr = self.load_audio(file_path)
|
| 208 |
if y is None:
|
| 209 |
return {"error": "Failed to load audio file"}
|
|
|
|
|
|
|
| 210 |
rhythm_data = self.analyze_rhythm(y, sr)
|
| 211 |
tonal_data = self.analyze_tonality(y, sr)
|
| 212 |
energy_data = self.analyze_energy(y, sr)
|
|
|
|
|
|
|
| 213 |
emotion_data = self.analyze_emotion(rhythm_data, tonal_data, energy_data)
|
| 214 |
theme_data = self.analyze_theme(rhythm_data, tonal_data, emotion_data)
|
|
|
|
|
|
|
| 215 |
def convert_numpy_to_python(obj):
|
| 216 |
if isinstance(obj, dict):
|
| 217 |
return {k: convert_numpy_to_python(v) for k, v in obj.items()}
|
|
|
|
| 223 |
return float(obj)
|
| 224 |
else:
|
| 225 |
return obj
|
|
|
|
|
|
|
| 226 |
rhythm_data = convert_numpy_to_python(rhythm_data)
|
| 227 |
tonal_data = convert_numpy_to_python(tonal_data)
|
| 228 |
energy_data = convert_numpy_to_python(energy_data)
|
| 229 |
emotion_data = convert_numpy_to_python(emotion_data)
|
| 230 |
theme_data = convert_numpy_to_python(theme_data)
|
|
|
|
|
|
|
| 231 |
return {
|
| 232 |
"file": file_path,
|
| 233 |
"rhythm_analysis": rhythm_data,
|
|
|
|
| 237 |
"theme_analysis": theme_data,
|
| 238 |
"summary": {
|
| 239 |
"tempo": float(rhythm_data["tempo"]),
|
|
|
|
|
|
|
|
|
|
| 240 |
"primary_emotion": emotion_data["primary_emotion"],
|
| 241 |
"primary_theme": theme_data["primary_theme"]
|
| 242 |
}
|
| 243 |
}
|
| 244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
# Create an instance of the analyzer
|
| 246 |
analyzer = MusicAnalyzer()
|
| 247 |
|
|
|
|
| 257 |
# Print analysis summary
|
| 258 |
print("\n=== MUSIC ANALYSIS SUMMARY ===")
|
| 259 |
print(f"Tempo: {results['summary']['tempo']:.1f} BPM")
|
|
|
|
|
|
|
| 260 |
print(f"Primary Emotion: {results['summary']['primary_emotion']}")
|
| 261 |
print(f"Primary Theme: {results['summary']['primary_theme']}")
|
| 262 |
|
| 263 |
# Show detailed results (optional)
|
| 264 |
import json
|
| 265 |
print("\n=== DETAILED ANALYSIS ===")
|
| 266 |
+
print(json.dumps(results, indent=2))
|
|
|
|
|
|
|
|
|