Spaces:
Running
Running
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import json
|
|
| 6 |
import time
|
| 7 |
import tempfile
|
| 8 |
import shutil
|
|
|
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
|
| 11 |
# Check if CUDA is available and set the device accordingly
|
|
@@ -16,12 +17,46 @@ AUDIO_API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-a
|
|
| 16 |
LYRICS_API_URL = "https://api-inference.huggingface.co/models/gpt2-xl"
|
| 17 |
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}
|
| 18 |
|
| 19 |
-
def
|
| 20 |
-
"""
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
def create_lyrics_prompt(classification_results):
|
| 24 |
-
"""Create a prompt for lyrics generation based on classification results"""
|
| 25 |
# Get the top genre and its characteristics
|
| 26 |
top_result = classification_results[0]
|
| 27 |
genre = top_result['label']
|
|
@@ -30,14 +65,57 @@ def create_lyrics_prompt(classification_results):
|
|
| 30 |
# Get additional musical elements
|
| 31 |
additional_elements = [r['label'] for r in classification_results[1:3]]
|
| 32 |
|
| 33 |
-
# Create a
|
| 34 |
prompt = f"""Write song lyrics in the style of {genre}.
|
| 35 |
Theme: A {genre} song with elements of {' and '.join(additional_elements)}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
[Verse 1]"""
|
| 38 |
return prompt
|
| 39 |
|
| 40 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
"""Generate lyrics using GPT2-XL with retry logic"""
|
| 42 |
wait_time = initial_wait
|
| 43 |
|
|
@@ -49,7 +127,7 @@ def generate_lyrics_with_retry(prompt, max_retries=5, initial_wait=2):
|
|
| 49 |
json={
|
| 50 |
"inputs": prompt,
|
| 51 |
"parameters": {
|
| 52 |
-
"max_new_tokens":
|
| 53 |
"temperature": 0.9,
|
| 54 |
"top_p": 0.95,
|
| 55 |
"do_sample": True,
|
|
@@ -66,23 +144,7 @@ def generate_lyrics_with_retry(prompt, max_retries=5, initial_wait=2):
|
|
| 66 |
result = response.json()
|
| 67 |
if isinstance(result, list) and len(result) > 0:
|
| 68 |
generated_text = result[0].get("generated_text", "")
|
| 69 |
-
|
| 70 |
-
lines = generated_text.split('\n')
|
| 71 |
-
cleaned_lines = []
|
| 72 |
-
current_section = "[Verse 1]"
|
| 73 |
-
|
| 74 |
-
for line in lines:
|
| 75 |
-
line = line.strip()
|
| 76 |
-
if line and not line.startswith('###') and not line.startswith('```'):
|
| 77 |
-
if line.lower().startswith('[verse') or line.lower().startswith('[chorus'):
|
| 78 |
-
current_section = line
|
| 79 |
-
cleaned_lines.append(line)
|
| 80 |
-
|
| 81 |
-
# Add chorus after first verse if not present
|
| 82 |
-
if len(cleaned_lines) == 4 and current_section == "[Verse 1]":
|
| 83 |
-
cleaned_lines.append("\n[Chorus]")
|
| 84 |
-
|
| 85 |
-
return "\n".join(cleaned_lines)
|
| 86 |
return "Error: No text generated"
|
| 87 |
elif response.status_code == 503:
|
| 88 |
print(f"Model loading, attempt {attempt + 1}/{max_retries}. Waiting {wait_time} seconds...")
|
|
@@ -127,14 +189,18 @@ def classify_and_generate(audio_file):
|
|
| 127 |
if not token:
|
| 128 |
return "Error: HF_TOKEN environment variable is not set. Please set your Hugging Face API token."
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
# Create a temporary file to handle the audio data
|
| 131 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio:
|
| 132 |
-
# If audio_file is a tuple (file path and sampling rate)
|
| 133 |
-
if isinstance(audio_file, tuple):
|
| 134 |
-
audio_path = audio_file[0]
|
| 135 |
-
else:
|
| 136 |
-
audio_path = audio_file
|
| 137 |
-
|
| 138 |
# Copy the audio file to our temporary file
|
| 139 |
shutil.copy2(audio_path, temp_audio.name)
|
| 140 |
|
|
@@ -163,8 +229,8 @@ def classify_and_generate(audio_file):
|
|
| 163 |
|
| 164 |
# Generate lyrics based on classification with retry logic
|
| 165 |
print("Generating lyrics based on classification...")
|
| 166 |
-
prompt = create_lyrics_prompt(formatted_results)
|
| 167 |
-
lyrics = generate_lyrics_with_retry(prompt)
|
| 168 |
|
| 169 |
# Format and return results
|
| 170 |
return format_results(formatted_results, lyrics, prompt)
|
|
|
|
| 6 |
import time
|
| 7 |
import tempfile
|
| 8 |
import shutil
|
| 9 |
+
import librosa
|
| 10 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 11 |
|
| 12 |
# Check if CUDA is available and set the device accordingly
|
|
|
|
| 17 |
LYRICS_API_URL = "https://api-inference.huggingface.co/models/gpt2-xl"
|
| 18 |
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}
|
| 19 |
|
| 20 |
+
def get_audio_duration(audio_path):
|
| 21 |
+
"""Get the duration of the audio file in seconds"""
|
| 22 |
+
try:
|
| 23 |
+
duration = librosa.get_duration(path=audio_path)
|
| 24 |
+
return duration
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error getting audio duration: {e}")
|
| 27 |
+
return None
|
| 28 |
+
|
| 29 |
+
def calculate_song_structure(duration):
|
| 30 |
+
"""Calculate song structure based on audio duration"""
|
| 31 |
+
if duration is None:
|
| 32 |
+
return {"verses": 2, "choruses": 1, "tokens": 200} # Default structure
|
| 33 |
+
|
| 34 |
+
# Basic rules for song structure:
|
| 35 |
+
# - Short clips (< 30s): 1 verse, 1 chorus
|
| 36 |
+
# - Medium clips (30s-2min): 2 verses, 1-2 choruses
|
| 37 |
+
# - Longer clips (>2min): 3 verses, 2-3 choruses
|
| 38 |
+
|
| 39 |
+
if duration < 30:
|
| 40 |
+
return {
|
| 41 |
+
"verses": 1,
|
| 42 |
+
"choruses": 1,
|
| 43 |
+
"tokens": 150
|
| 44 |
+
}
|
| 45 |
+
elif duration < 120:
|
| 46 |
+
return {
|
| 47 |
+
"verses": 2,
|
| 48 |
+
"choruses": 2,
|
| 49 |
+
"tokens": 200
|
| 50 |
+
}
|
| 51 |
+
else:
|
| 52 |
+
return {
|
| 53 |
+
"verses": 3,
|
| 54 |
+
"choruses": 3,
|
| 55 |
+
"tokens": 300
|
| 56 |
+
}
|
| 57 |
|
| 58 |
+
def create_lyrics_prompt(classification_results, song_structure):
|
| 59 |
+
"""Create a prompt for lyrics generation based on classification results and desired structure"""
|
| 60 |
# Get the top genre and its characteristics
|
| 61 |
top_result = classification_results[0]
|
| 62 |
genre = top_result['label']
|
|
|
|
| 65 |
# Get additional musical elements
|
| 66 |
additional_elements = [r['label'] for r in classification_results[1:3]]
|
| 67 |
|
| 68 |
+
# Create a structured prompt based on song length
|
| 69 |
prompt = f"""Write song lyrics in the style of {genre}.
|
| 70 |
Theme: A {genre} song with elements of {' and '.join(additional_elements)}
|
| 71 |
+
Structure: {song_structure['verses']} verses and {song_structure['choruses']} choruses
|
| 72 |
+
|
| 73 |
+
Format the lyrics with [Verse 1], [Chorus], [Verse 2], etc.
|
| 74 |
+
Make each verse 4-6 lines and chorus 4 lines.
|
| 75 |
|
| 76 |
[Verse 1]"""
|
| 77 |
return prompt
|
| 78 |
|
| 79 |
+
def format_lyrics(generated_text, song_structure):
|
| 80 |
+
"""Format the generated lyrics according to desired structure"""
|
| 81 |
+
lines = generated_text.split('\n')
|
| 82 |
+
cleaned_lines = []
|
| 83 |
+
current_section = "[Verse 1]"
|
| 84 |
+
verse_count = 0
|
| 85 |
+
chorus_count = 0
|
| 86 |
+
|
| 87 |
+
for line in lines:
|
| 88 |
+
line = line.strip()
|
| 89 |
+
if not line or line.startswith('###') or line.startswith('```'):
|
| 90 |
+
continue
|
| 91 |
+
|
| 92 |
+
# Handle section markers
|
| 93 |
+
if line.lower().startswith('[verse'):
|
| 94 |
+
if verse_count < song_structure['verses']:
|
| 95 |
+
verse_count += 1
|
| 96 |
+
current_section = f"[Verse {verse_count}]"
|
| 97 |
+
cleaned_lines.append(f"\n{current_section}")
|
| 98 |
+
continue
|
| 99 |
+
elif line.lower().startswith('[chorus'):
|
| 100 |
+
if chorus_count < song_structure['choruses']:
|
| 101 |
+
chorus_count += 1
|
| 102 |
+
current_section = f"[Chorus {chorus_count}]"
|
| 103 |
+
cleaned_lines.append(f"\n{current_section}")
|
| 104 |
+
continue
|
| 105 |
+
|
| 106 |
+
# Add the line if we haven't exceeded our structure limits
|
| 107 |
+
if (current_section.startswith('[Verse') and verse_count <= song_structure['verses']) or \
|
| 108 |
+
(current_section.startswith('[Chorus') and chorus_count <= song_structure['choruses']):
|
| 109 |
+
cleaned_lines.append(line)
|
| 110 |
+
|
| 111 |
+
# Add chorus after first verse if not present
|
| 112 |
+
if len(cleaned_lines) == 5 and chorus_count == 0: # After 4 lines of verse + section header
|
| 113 |
+
chorus_count += 1
|
| 114 |
+
cleaned_lines.append(f"\n[Chorus 1]")
|
| 115 |
+
|
| 116 |
+
return "\n".join(cleaned_lines)
|
| 117 |
+
|
| 118 |
+
def generate_lyrics_with_retry(prompt, song_structure, max_retries=5, initial_wait=2):
|
| 119 |
"""Generate lyrics using GPT2-XL with retry logic"""
|
| 120 |
wait_time = initial_wait
|
| 121 |
|
|
|
|
| 127 |
json={
|
| 128 |
"inputs": prompt,
|
| 129 |
"parameters": {
|
| 130 |
+
"max_new_tokens": song_structure['tokens'],
|
| 131 |
"temperature": 0.9,
|
| 132 |
"top_p": 0.95,
|
| 133 |
"do_sample": True,
|
|
|
|
| 144 |
result = response.json()
|
| 145 |
if isinstance(result, list) and len(result) > 0:
|
| 146 |
generated_text = result[0].get("generated_text", "")
|
| 147 |
+
return format_lyrics(generated_text, song_structure)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
return "Error: No text generated"
|
| 149 |
elif response.status_code == 503:
|
| 150 |
print(f"Model loading, attempt {attempt + 1}/{max_retries}. Waiting {wait_time} seconds...")
|
|
|
|
| 189 |
if not token:
|
| 190 |
return "Error: HF_TOKEN environment variable is not set. Please set your Hugging Face API token."
|
| 191 |
|
| 192 |
+
# Get audio duration and calculate structure
|
| 193 |
+
if isinstance(audio_file, tuple):
|
| 194 |
+
audio_path = audio_file[0]
|
| 195 |
+
else:
|
| 196 |
+
audio_path = audio_file
|
| 197 |
+
|
| 198 |
+
duration = get_audio_duration(audio_path)
|
| 199 |
+
song_structure = calculate_song_structure(duration)
|
| 200 |
+
print(f"Audio duration: {duration:.2f}s, Structure: {song_structure}")
|
| 201 |
+
|
| 202 |
# Create a temporary file to handle the audio data
|
| 203 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
# Copy the audio file to our temporary file
|
| 205 |
shutil.copy2(audio_path, temp_audio.name)
|
| 206 |
|
|
|
|
| 229 |
|
| 230 |
# Generate lyrics based on classification with retry logic
|
| 231 |
print("Generating lyrics based on classification...")
|
| 232 |
+
prompt = create_lyrics_prompt(formatted_results, song_structure)
|
| 233 |
+
lyrics = generate_lyrics_with_retry(prompt, song_structure)
|
| 234 |
|
| 235 |
# Format and return results
|
| 236 |
return format_results(formatted_results, lyrics, prompt)
|