Spaces:
Running
Running
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import requests
|
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
import torch
|
|
|
|
| 5 |
|
| 6 |
# Check if CUDA is available and set the device accordingly
|
| 7 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
@@ -9,26 +10,63 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
| 9 |
API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593"
|
| 10 |
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
def classify_audio(audio_file):
|
| 13 |
"""
|
| 14 |
Classify the uploaded audio file using Hugging Face AST model
|
| 15 |
"""
|
| 16 |
if audio_file is None:
|
| 17 |
-
return "Please upload an audio file."
|
| 18 |
|
| 19 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
with open(audio_file.name, "rb") as f:
|
| 21 |
data = f.read()
|
|
|
|
|
|
|
| 22 |
response = requests.post(API_URL, headers=headers, data=data)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
if response.status_code == 200:
|
| 25 |
results = response.json()
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
else:
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
except Exception as e:
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Create Gradio interface
|
| 34 |
iface = gr.Interface(
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
+
import json
|
| 6 |
|
| 7 |
# Check if CUDA is available and set the device accordingly
|
| 8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
| 10 |
API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593"
|
| 11 |
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}
|
| 12 |
|
| 13 |
+
def format_error(message):
|
| 14 |
+
"""Helper function to format error messages as JSON"""
|
| 15 |
+
return [{"error": message}]
|
| 16 |
+
|
| 17 |
def classify_audio(audio_file):
|
| 18 |
"""
|
| 19 |
Classify the uploaded audio file using Hugging Face AST model
|
| 20 |
"""
|
| 21 |
if audio_file is None:
|
| 22 |
+
return format_error("Please upload an audio file.")
|
| 23 |
|
| 24 |
try:
|
| 25 |
+
# Debug: Print token status (masked)
|
| 26 |
+
token = os.environ.get('HF_TOKEN')
|
| 27 |
+
if not token:
|
| 28 |
+
return format_error("Error: HF_TOKEN environment variable is not set. Please set your Hugging Face API token.")
|
| 29 |
+
print(f"Token present: {'Yes' if token else 'No'}, Token length: {len(token) if token else 0}")
|
| 30 |
+
|
| 31 |
+
# Debug: Print audio file info
|
| 32 |
+
print(f"Audio file path: {audio_file.name}")
|
| 33 |
+
print(f"Audio file size: {os.path.getsize(audio_file.name)} bytes")
|
| 34 |
+
|
| 35 |
with open(audio_file.name, "rb") as f:
|
| 36 |
data = f.read()
|
| 37 |
+
|
| 38 |
+
print("Sending request to Hugging Face API...")
|
| 39 |
response = requests.post(API_URL, headers=headers, data=data)
|
| 40 |
|
| 41 |
+
# Print response for debugging
|
| 42 |
+
print(f"Response status code: {response.status_code}")
|
| 43 |
+
print(f"Response headers: {dict(response.headers)}")
|
| 44 |
+
print(f"Response content: {response.content.decode('utf-8', errors='ignore')}")
|
| 45 |
+
|
| 46 |
if response.status_code == 200:
|
| 47 |
results = response.json()
|
| 48 |
+
# Format results for better readability
|
| 49 |
+
formatted_results = []
|
| 50 |
+
for result in results:
|
| 51 |
+
formatted_results.append({
|
| 52 |
+
'label': result['label'],
|
| 53 |
+
'score': f"{result['score']*100:.2f}%"
|
| 54 |
+
})
|
| 55 |
+
return formatted_results
|
| 56 |
+
elif response.status_code == 401:
|
| 57 |
+
return format_error("Error: Invalid or missing API token. Please check your Hugging Face API token.")
|
| 58 |
+
elif response.status_code == 503:
|
| 59 |
+
return format_error("Error: Model is loading. Please try again in a few seconds.")
|
| 60 |
else:
|
| 61 |
+
error_msg = f"Error: API returned status code {response.status_code}\n"
|
| 62 |
+
error_msg += f"Response headers: {dict(response.headers)}\n"
|
| 63 |
+
error_msg += f"Response: {response.text}"
|
| 64 |
+
return format_error(error_msg)
|
| 65 |
|
| 66 |
except Exception as e:
|
| 67 |
+
import traceback
|
| 68 |
+
error_details = traceback.format_exc()
|
| 69 |
+
return format_error(f"Error processing audio: {str(e)}\nDetails:\n{error_details}")
|
| 70 |
|
| 71 |
# Create Gradio interface
|
| 72 |
iface = gr.Interface(
|