Commit
·
049cfd4
1
Parent(s):
836c70c
moved to github.io
Browse files- app.py +27 -333
- generation/__pycache__/gen_utils.cpython-39.pyc +0 -0
- model/__pycache__/__init__.cpython-39.pyc +0 -0
- model/__pycache__/latent_diffusion.cpython-39.pyc +0 -0
- model/__pycache__/model_sdf.cpython-39.pyc +0 -0
- model/__pycache__/sampler_sdf.cpython-39.pyc +0 -0
- model/architecture/__pycache__/unet.cpython-39.pyc +0 -0
- model/architecture/__pycache__/unet_attention.cpython-39.pyc +0 -0
- output_0.mid +0 -0
- output_0.wav +2 -2
- piano_roll.png +2 -2
- train/__pycache__/__init__.cpython-39.pyc +0 -0
- train/__pycache__/learner.cpython-39.pyc +0 -0
- train/__pycache__/train_params.cpython-39.pyc +0 -0
app.py
CHANGED
|
@@ -57,10 +57,8 @@ def update_musescore_image(selected_prompt):
|
|
| 57 |
elif selected_prompt == "example 6":
|
| 58 |
return "samples/diy_examples/example6/example6.jpg"
|
| 59 |
|
| 60 |
-
|
| 61 |
-
# Model for generating music (example)
|
| 62 |
def generate_music(prompt, tempo, num_samples=1, mode="example", rhythm_control="Yes"):
|
| 63 |
-
|
| 64 |
ldm_model = init_ldm_model(params_chord_lsh_cond, debug_mode=False)
|
| 65 |
model = Diffpro_SDF.load_trained(ldm_model, model_path).to(device)
|
| 66 |
sampler = SDFSampler(model.ldm, 64, 64, is_autocast=False, device=device, debug_mode=False)
|
|
@@ -101,7 +99,6 @@ def generate_music(prompt, tempo, num_samples=1, mode="example", rhythm_control=
|
|
| 101 |
if background_condition[:,4:6,:,:].min()>=0:
|
| 102 |
full_lsh_roll = extend_piano_roll(background_condition[i,4:6,:,:].cpu().numpy())
|
| 103 |
midi_file = piano_roll_to_midi(full_roll, full_chd_roll, full_lsh_roll, bpm=tempo)
|
| 104 |
-
# filename = f'DDIM_w_rhythm_onset_0to10_{i}_edit_x0_and_eps'+'.mid'
|
| 105 |
filename = f"output_{i}.mid"
|
| 106 |
save_midi(midi_file, filename)
|
| 107 |
subprocess.Popen(['timidity',f'output_{i}.mid','-Ow','-o',f'output_{i}.wav']).communicate()
|
|
@@ -126,129 +123,16 @@ def visualize_midi(midi):
|
|
| 126 |
plt.savefig(output_image_path)
|
| 127 |
return output_image_path
|
| 128 |
|
| 129 |
-
def plot_rhythm(rhythm_str, label):
|
| 130 |
-
if rhythm_str=="null rhythm":
|
| 131 |
-
return None
|
| 132 |
-
fig, ax = plt.subplots(figsize=(6, 2))
|
| 133 |
-
|
| 134 |
-
# Ensure it's a 16-bit string
|
| 135 |
-
rhythm_str = rhythm_str[:16]
|
| 136 |
-
|
| 137 |
-
# Convert string to a list of 0s and 1s
|
| 138 |
-
rhythm = [0 if bit=="0" else 1 for bit in rhythm_str]
|
| 139 |
-
|
| 140 |
-
# Define the x axis for the 16 sixteenth notes
|
| 141 |
-
x = list(range(1, 17)) # 1 to 16 sixteenth notes
|
| 142 |
-
|
| 143 |
-
# Plot each note (1 as filled circle, 0 as empty circle)
|
| 144 |
-
for i, bit in enumerate(rhythm):
|
| 145 |
-
if bit == 1:
|
| 146 |
-
ax.scatter(i + 1, 1, color='black', s=100, label="Note" if i == 0 else "")
|
| 147 |
-
else:
|
| 148 |
-
ax.scatter(i + 1, 1, edgecolor='black', facecolor='none', s=100, label="Rest" if i == 0 else "")
|
| 149 |
-
|
| 150 |
-
# Distinguish groups of 4 using vertical dashed lines (no solid grid lines)
|
| 151 |
-
for i in range(4, 17, 4):
|
| 152 |
-
ax.axvline(x=i + 0.5, color='grey', linestyle='--')
|
| 153 |
-
|
| 154 |
-
# Remove solid vertical grid lines by setting the grid off
|
| 155 |
-
ax.grid(False)
|
| 156 |
-
|
| 157 |
-
# Formatting the plot
|
| 158 |
-
ax.set_xlim(0.5, 16.5)
|
| 159 |
-
ax.set_ylim(0.8, 1.2)
|
| 160 |
-
ax.set_xticks(x)
|
| 161 |
-
ax.set_yticks([])
|
| 162 |
-
ax.set_xlabel("16th Notes")
|
| 163 |
-
ax.set_title("Rhythm Pattern")
|
| 164 |
-
|
| 165 |
-
fig.savefig(f'samples/diy_examples/rhythm_plot_{label}.png')
|
| 166 |
-
plt.close(fig)
|
| 167 |
-
return f'samples/diy_examples/rhythm_plot_{label}.png'
|
| 168 |
-
|
| 169 |
-
def adjust_rhythm_string(s):
|
| 170 |
-
# Truncate if longer than 16 characters
|
| 171 |
-
if len(s) > 16:
|
| 172 |
-
return s[:16]
|
| 173 |
-
# Pad with zeros if shorter than 16 characters
|
| 174 |
-
else:
|
| 175 |
-
return s.ljust(16, '0')
|
| 176 |
-
def rhythm_string_to_array(s):
|
| 177 |
-
# Ensure the string is 16 characters long
|
| 178 |
-
s = s[:16].ljust(16, '0') # Truncate or pad with '0' to make it 16 characters
|
| 179 |
-
# Convert to numpy array, treating non-'0' as '1'
|
| 180 |
-
arr = np.array([1 if char != '0' else 0 for char in s], dtype=int)
|
| 181 |
-
arr = arr*np.array([3,1,2,1,3,1,2,1,3,1,2,1,3,1,2,1])
|
| 182 |
-
print(arr)
|
| 183 |
-
return arr
|
| 184 |
-
|
| 185 |
# Gradio main function
|
| 186 |
def generate_from_example(prompt):
|
| 187 |
-
midi_output, audio_output, midi = generate_music(prompt, tempo=80, mode="example", rhythm_control=
|
| 188 |
piano_roll_image = visualize_midi(midi)
|
| 189 |
return audio_output, piano_roll_image
|
| 190 |
|
| 191 |
-
def generate_diy(m1_chord, m2_chord, m3_chord, m4_chord,
|
| 192 |
-
m1_rhythm, m2_rhythm, m3_rhythm, m4_rhythm, tempo):
|
| 193 |
-
print("\n\n\n",m1_chord,type(m1_chord), "\n\n\n")
|
| 194 |
-
test_chd_roll = np.concatenate([np.tile(CHORD_DICTIONARY[m1_chord], (16, 1)),
|
| 195 |
-
np.tile(CHORD_DICTIONARY[m2_chord], (16, 1)),
|
| 196 |
-
np.tile(CHORD_DICTIONARY[m3_chord], (16, 1)),
|
| 197 |
-
np.tile(CHORD_DICTIONARY[m4_chord], (16, 1))])
|
| 198 |
-
rhythms = [m1_rhythm, m2_rhythm, m3_rhythm, m4_rhythm]
|
| 199 |
-
|
| 200 |
-
chd_roll = np.concatenate([test_chd_roll[np.newaxis,:,:], test_chd_roll[np.newaxis,:,:]], axis=0)
|
| 201 |
-
|
| 202 |
-
chd_roll = circular_extend(chd_roll)
|
| 203 |
-
chd_roll = -chd_roll-1
|
| 204 |
-
|
| 205 |
-
real_chd_roll = chd_roll
|
| 206 |
-
|
| 207 |
-
melody_roll = -np.ones_like(chd_roll)
|
| 208 |
-
|
| 209 |
-
if "null rhythm" not in rhythms:
|
| 210 |
-
rhythm_full = []
|
| 211 |
-
for i in range(len(rhythms)):
|
| 212 |
-
rhythm = adjust_rhythm_string(rhythms[i])
|
| 213 |
-
rhythm = rhythm_string_to_array(rhythm)
|
| 214 |
-
rhythm_full.append(rhythm)
|
| 215 |
-
rhythm_full = np.concatenate(rhythm_full, axis=0)
|
| 216 |
-
|
| 217 |
-
onset_roll = test_chd_roll*rhythm_full[:, np.newaxis]
|
| 218 |
-
sustain_roll = np.zeros_like(onset_roll)
|
| 219 |
-
no_onset_pos = np.all(onset_roll == 0, axis=-1)
|
| 220 |
-
sustain_roll[no_onset_pos] = test_chd_roll[no_onset_pos]
|
| 221 |
-
|
| 222 |
-
real_chd_roll = np.concatenate([onset_roll[np.newaxis,:,:], sustain_roll[np.newaxis,:,:]], axis=0)
|
| 223 |
-
real_chd_roll = circular_extend(real_chd_roll)
|
| 224 |
-
|
| 225 |
-
background_condition = np.concatenate([real_chd_roll, chd_roll, melody_roll], axis=0)
|
| 226 |
-
|
| 227 |
-
midi_output, audio_output, midi = generate_music(background_condition, tempo, mode="diy")
|
| 228 |
-
piano_roll_image = visualize_midi(midi)
|
| 229 |
-
return midi_output, audio_output, piano_roll_image
|
| 230 |
-
|
| 231 |
# Prompt list
|
| 232 |
prompt_list = ["example 1", "example 2", "example 3", "example 4"]
|
| 233 |
-
rhythm_list = ["null rhythm", "1010101010101010", "1011101010111010","1111101010111010","1010001010101010","1010101000101010"]
|
| 234 |
-
|
| 235 |
|
| 236 |
custom_css = """
|
| 237 |
-
.custom-row1 {
|
| 238 |
-
background-color: #fdebd0;
|
| 239 |
-
padding: 10px;
|
| 240 |
-
border-radius: 5px;
|
| 241 |
-
}
|
| 242 |
-
.custom-row2 {
|
| 243 |
-
background-color: #d1f2eb;
|
| 244 |
-
padding: 10px;
|
| 245 |
-
border-radius: 5px;
|
| 246 |
-
}
|
| 247 |
-
.custom-grey {
|
| 248 |
-
background-color: #f0f0f0;
|
| 249 |
-
padding: 10px;
|
| 250 |
-
border-radius: 5px;
|
| 251 |
-
}
|
| 252 |
.custom-purple {
|
| 253 |
background-color: #d7bde2;
|
| 254 |
padding: 10px;
|
|
@@ -259,227 +143,38 @@ custom_css = """
|
|
| 259 |
}
|
| 260 |
"""
|
| 261 |
|
| 262 |
-
|
| 263 |
with gr.Blocks(css=custom_css) as demo:
|
| 264 |
-
gr.Markdown("# <div style='text-align: center;font-size:40px'> Efficient Fine-Grained Guidance for Diffusion
|
| 265 |
|
| 266 |
-
gr.Markdown("<
|
| 267 |
-
|
| 268 |
-
\n   (2) Fine-grained control during the diffusion sampling process.\
|
| 269 |
-
\n In particular, **sampling control** ensures tonal accuracy in every generated sample, allowing our model to produce music with high precision, consistent rhythmic patterns,\
|
| 270 |
-
and even stylistic variations that align with user intent.<span>")
|
| 271 |
-
gr.Markdown("<span style='font-size:25px;color: red'> At the bottom of this page, we provide an interactive space for you to try our model by yourself! <span>")
|
| 272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
-
gr.Markdown("\n\n\n")
|
| 275 |
-
gr.Markdown("# 1. Accompaniment Generation given Melody and Chord")
|
| 276 |
-
gr.Markdown("<span style='font-size:20px;'> In each example, the left column displays the melody provided as inputs to the model.\
|
| 277 |
-
The right column showcases music samples generated by the model.<span>")
|
| 278 |
-
|
| 279 |
-
with gr.Column(elem_classes="custom-row1"):
|
| 280 |
-
gr.Markdown("## Example 1")
|
| 281 |
-
with gr.Row():
|
| 282 |
-
with gr.Column():
|
| 283 |
-
gr.Markdown("<span style='font-size:20px;'> With the following melody as condition <span>")
|
| 284 |
-
example1_mel = gr.Audio(value="samples/diy_examples/example1/example_1_mel.wav", label="Melody", scale = 5)
|
| 285 |
-
with gr.Column():
|
| 286 |
-
gr.Markdown("<span style='font-size:20px;'> Generated Accompaniments <span>")
|
| 287 |
-
example1_audio = gr.Audio(value="samples/diy_examples/example1/sample1.wav", label="Generated Accompaniment", scale = 5)
|
| 288 |
-
|
| 289 |
-
with gr.Column(elem_classes="custom-row2"):
|
| 290 |
-
gr.Markdown("## Example 2")
|
| 291 |
-
with gr.Row():
|
| 292 |
-
with gr.Column():
|
| 293 |
-
gr.Markdown("<span style='font-size:20px;'> With the following melody as condition <span>")
|
| 294 |
-
example1_mel = gr.Audio(value="samples/diy_examples/example2/example_2_mel.wav", label="Melody", scale = 5)
|
| 295 |
-
with gr.Column():
|
| 296 |
-
gr.Markdown("<span style='font-size:20px;'> Generated Accompaniments <span>")
|
| 297 |
-
example1_audio = gr.Audio(value="samples/diy_examples/example2/sample1.wav", label="Generated Accompaniment", scale = 5)
|
| 298 |
-
|
| 299 |
-
with gr.Column(elem_classes="custom-row1"):
|
| 300 |
-
gr.Markdown("## Example 3")
|
| 301 |
-
with gr.Row():
|
| 302 |
-
with gr.Column():
|
| 303 |
-
gr.Markdown("<span style='font-size:20px;'> With the following melody as condition <span>")
|
| 304 |
-
example1_mel = gr.Audio(value="samples/diy_examples/example3/example_3_mel.wav", label="Melody", scale = 5)
|
| 305 |
-
with gr.Column():
|
| 306 |
-
gr.Markdown("<span style='font-size:20px;'> Generated Accompaniments <span>")
|
| 307 |
-
example1_audio = gr.Audio(value="samples/diy_examples/example3/sample1.wav", label="Generated Accompaniment", scale = 5)
|
| 308 |
-
|
| 309 |
-
with gr.Column(elem_classes="custom-row2"):
|
| 310 |
-
gr.Markdown("## Example 4")
|
| 311 |
-
with gr.Row():
|
| 312 |
-
with gr.Column():
|
| 313 |
-
gr.Markdown("<span style='font-size:20px;'> With the following melody as condition <span>")
|
| 314 |
-
example1_mel = gr.Audio(value="samples/diy_examples/example4/example_4_mel.wav", label="Melody", scale = 5)
|
| 315 |
-
with gr.Column():
|
| 316 |
-
gr.Markdown("<span style='font-size:20px;'> Generated Accompaniments <span>")
|
| 317 |
-
example1_audio = gr.Audio(value="samples/diy_examples/example4/sample1.wav", label="Generated Accompaniment", scale = 5)
|
| 318 |
-
|
| 319 |
-
gr.HTML("<div style='height: 50px;'></div>")
|
| 320 |
-
gr.Markdown("# \n\n\n")
|
| 321 |
-
gr.Markdown("# 2. Style-Controlled Music Generation")
|
| 322 |
-
gr.Markdown("<span style='font-size:20px;'>Our approach enables controllable stylization in music generation. The sampling control is able to\
|
| 323 |
-
ensure that all generated notes strictly adhere to the target musical style's scale.\
|
| 324 |
-
This allows the model to generate music in specific styles — even those that were not present in \
|
| 325 |
-
the training data.<span>")
|
| 326 |
-
gr.Markdown("<span style='font-size:20px;'> Below, we demonstrate several examples of style-controlled music generation for:\
|
| 327 |
-
\n   (1) Dorian Mode: (with scale being A-B-C-D-E-F#-G);\
|
| 328 |
-
\n   (2) Chinese Style: (with scale being C-D-E-G-A). <span>")
|
| 329 |
-
|
| 330 |
-
with gr.Column(elem_classes="custom-row1"):
|
| 331 |
-
gr.Markdown("## Dorian Mode")
|
| 332 |
-
gr.Markdown("<span style='font-size:20px;'> The following are two examples generated by our method <span>")
|
| 333 |
-
with gr.Row():
|
| 334 |
-
with gr.Column(elem_classes="custom-grey"):
|
| 335 |
-
gr.Markdown("<span style='font-size:20px;'> Example 1 <span>")
|
| 336 |
-
example1_mel = gr.Audio(value="samples/different_styles/dorian_1.wav", scale = 5)
|
| 337 |
-
with gr.Column(elem_classes="custom-grey"):
|
| 338 |
-
gr.Markdown("<span style='font-size:20px;'> Example 2 <span>")
|
| 339 |
-
example1_audio = gr.Audio(value="samples/different_styles/dorian_2.wav", scale = 5)
|
| 340 |
-
|
| 341 |
-
with gr.Column(elem_classes="custom-row2"):
|
| 342 |
-
gr.Markdown("## Chinese Style")
|
| 343 |
-
gr.Markdown("<span style='font-size:20px;'> The following are two examples generated by our method <span>")
|
| 344 |
-
with gr.Row():
|
| 345 |
-
with gr.Column(elem_classes="custom-grey"):
|
| 346 |
-
gr.Markdown("<span style='font-size:20px;'> Example 1 <span>")
|
| 347 |
-
example1_mel = gr.Audio(value="samples/different_styles/chinese_1.wav", scale = 5)
|
| 348 |
-
with gr.Column(elem_classes="custom-grey"):
|
| 349 |
-
gr.Markdown("<span style='font-size:20px;'> Example 2 <span>")
|
| 350 |
-
example1_audio = gr.Audio(value="samples/different_styles/chinese_2.wav", scale = 5)
|
| 351 |
-
|
| 352 |
gr.HTML("<div style='height: 50px;'></div>")
|
| 353 |
gr.Markdown("\n\n\n")
|
| 354 |
-
gr.Markdown("#
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
gr.Markdown("Melody Sheet")
|
| 373 |
-
example1_sheet = gr.Image(value="samples/control_vs_uncontrol/example_1_mel_chd.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 374 |
-
with gr.Column(scale=1, min_width=10, ):
|
| 375 |
-
gr.Markdown("Melody Audio")
|
| 376 |
-
example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_1_mel_chd.wav", label="Melody, wav", waveform_options=gr.WaveformOptions(show_recording_waveform=False), scale = 1, min_width=10)
|
| 377 |
-
|
| 378 |
-
gr.Markdown("## Generated Accompaniments")
|
| 379 |
-
with gr.Row(elem_classes="custom-grey"):
|
| 380 |
-
gr.Markdown("<span style='font-size:20px;'> Without sampling control<span>")
|
| 381 |
-
with gr.Column(scale=2, min_width=300):
|
| 382 |
-
gr.Markdown("Music Sheet")
|
| 383 |
-
example1_sheet = gr.Image(value="samples/control_vs_uncontrol/example_1_acc_uncontrol.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 384 |
-
with gr.Column(scale=1, min_width=150):
|
| 385 |
-
gr.Markdown("Audio")
|
| 386 |
-
example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_1_acc_uncontrol.wav", scale = 1, min_width=10)
|
| 387 |
-
gr.Markdown("\n\n\n")
|
| 388 |
-
with gr.Row(elem_classes="custom-grey"):
|
| 389 |
-
with gr.Column(scale=1, min_width=150):
|
| 390 |
-
gr.Markdown("<span style='font-size:20px;'>With sampling control<span>")
|
| 391 |
-
with gr.Column(scale=2, min_width=300):
|
| 392 |
-
gr.Markdown("Music Sheet")
|
| 393 |
-
example1_sheet = gr.Image(value="samples/control_vs_uncontrol/example_1_acc_control.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 394 |
-
with gr.Column(scale=1, min_width=150):
|
| 395 |
-
gr.Markdown("Audio")
|
| 396 |
-
example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_1_acc_control.wav", scale = 1, min_width=10)
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
with gr.Column(elem_classes="custom-row2"):
|
| 400 |
-
gr.Markdown("## Example 2")
|
| 401 |
-
|
| 402 |
-
with gr.Row(elem_classes="custom-grey"):
|
| 403 |
-
gr.Markdown("<span style='font-size:20px;'> With pre-defined melody and chord as follows<span>")
|
| 404 |
-
with gr.Column(scale=2, min_width=10, ):
|
| 405 |
-
gr.Markdown("Melody Sheet")
|
| 406 |
-
example1_sheet = gr.Image(value="samples/control_vs_uncontrol/example_2_mel_chd.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 407 |
-
with gr.Column(scale=1, min_width=10, ):
|
| 408 |
-
gr.Markdown("Melody Audio")
|
| 409 |
-
example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_2_mel_chd.wav", label="Melody, wav", waveform_options=gr.WaveformOptions(show_recording_waveform=False), scale = 1, min_width=10)
|
| 410 |
-
|
| 411 |
-
gr.Markdown("## Generated Accompaniments")
|
| 412 |
-
with gr.Row(elem_classes="custom-grey"):
|
| 413 |
-
gr.Markdown("<span style='font-size:20px;'> Without sampling control<span>")
|
| 414 |
-
with gr.Column(scale=2, min_width=300):
|
| 415 |
-
gr.Markdown("Music Sheet")
|
| 416 |
-
example1_sheet = gr.Image(value="samples/control_vs_uncontrol/example_2_acc_uncontrol.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 417 |
-
with gr.Column(scale=1, min_width=150):
|
| 418 |
-
gr.Markdown("Audio")
|
| 419 |
-
example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_2_acc_uncontrol.wav", scale = 1, min_width=10)
|
| 420 |
-
gr.Markdown("\n\n\n")
|
| 421 |
-
with gr.Row(elem_classes="custom-grey"):
|
| 422 |
-
with gr.Column(scale=1, min_width=150):
|
| 423 |
-
gr.Markdown("<span style='font-size:20px;'>With sampling control<span>")
|
| 424 |
-
with gr.Column(scale=2, min_width=300):
|
| 425 |
-
gr.Markdown("Music Sheet")
|
| 426 |
-
example1_sheet = gr.Image(value="samples/control_vs_uncontrol/example_2_acc_control.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 427 |
-
with gr.Column(scale=1, min_width=150):
|
| 428 |
-
gr.Markdown("Audio")
|
| 429 |
-
example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_2_acc_control.wav", scale = 1, min_width=10)
|
| 430 |
-
|
| 431 |
-
# with gr.Row():
|
| 432 |
-
# with gr.Column(scale=1, min_width=300, elem_classes="custom-row1"):
|
| 433 |
-
# gr.Markdown("## Example 1")
|
| 434 |
-
# gr.Markdown("<span style='font-size:20px;'> With pre-defined melody and chord as follows<span>")
|
| 435 |
-
# example1_sheet = gr.Image(value="samples/control_vs_uncontrol/example_1_mel_chd.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 436 |
-
# # Audio component to play the audio
|
| 437 |
-
# example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_1_mel_chd.wav", label="Melody, wav", waveform_options=gr.WaveformOptions(show_recording_waveform=False), scale = 1, min_width=10)
|
| 438 |
-
|
| 439 |
-
# gr.Markdown("## Generated Accompaniments")
|
| 440 |
-
# with gr.Row():
|
| 441 |
-
# with gr.Column(scale=1, min_width=150):
|
| 442 |
-
# gr.Markdown("<span style='font-size:20px;'> without sampling control<span>")
|
| 443 |
-
# example1_sheet = gr.Image(value="samples/control_vs_uncontrol/sample_1.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 444 |
-
# example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_1_acc_uncontrol.wav", scale = 1, min_width=10)
|
| 445 |
-
# with gr.Column(scale=1, min_width=150):
|
| 446 |
-
# gr.Markdown("<span style='font-size:20px;'> with sampling control<span>")
|
| 447 |
-
# example1_sheet = gr.Image(value="samples/control_vs_uncontrol/sample_1.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 448 |
-
# example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_1_acc_control.wav", scale = 1, min_width=10)
|
| 449 |
-
# with gr.Column(scale=1, min_width=300, elem_classes="custom-row2"):
|
| 450 |
-
# gr.Markdown("## Example 2")
|
| 451 |
-
# gr.Markdown("<span style='font-size:20px;'> With pre-defined melody and chord as follows<span>")
|
| 452 |
-
# example1_sheet = gr.Image(value="samples/control_vs_uncontrol/example_1_mel_chd.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 453 |
-
# # Audio component to play the audio
|
| 454 |
-
# example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_1_mel_chd.wav", label="Melody, wav", waveform_options=gr.WaveformOptions(show_recording_waveform=False), scale = 1, min_width=10)
|
| 455 |
-
|
| 456 |
-
# gr.Markdown("## Generated Accompaniments")
|
| 457 |
-
# with gr.Row():
|
| 458 |
-
# with gr.Column(scale=1, min_width=150):
|
| 459 |
-
# gr.Markdown("<span style='font-size:20px;'> without sampling control<span>")
|
| 460 |
-
# example1_sheet = gr.Image(value="samples/control_vs_uncontrol/sample_1.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 461 |
-
# example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_1_acc_uncontrol.wav", scale = 1, min_width=10)
|
| 462 |
-
# with gr.Column(scale=1, min_width=150):
|
| 463 |
-
# gr.Markdown("<span style='font-size:20px;'> with sampling control<span>")
|
| 464 |
-
# example1_sheet = gr.Image(value="samples/control_vs_uncontrol/sample_1.jpg", label="Music Sheet of Melody and Chord", scale=1, min_width=10)
|
| 465 |
-
# example1_melody = gr.Audio(value="samples/control_vs_uncontrol/example_1_acc_control.wav", scale = 1, min_width=10)
|
| 466 |
-
|
| 467 |
-
|
| 468 |
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
''' Try to generate by users '''
|
| 472 |
-
gr.HTML("<div style='height: 50px;'></div>")
|
| 473 |
-
gr.Markdown("\n\n\n")
|
| 474 |
-
gr.Markdown("# <span style='color: red;'> 4. DIY in real time! </span>")
|
| 475 |
-
gr.Markdown("<span style='font-size:20px;'> Here is an interactive tool for you to try our model and generate by yourself.\
|
| 476 |
-
You can generate new accompaniments for given melody and chord conditions <span>")
|
| 477 |
-
|
| 478 |
-
gr.Markdown("### <span style='color: blue;'> Currently this space is supported with Hugging Face CPU and on average,\
|
| 479 |
-
it takes about 15 seconds to generate a 4-measure music piece. However, if other users are generating\
|
| 480 |
-
music at the same time, one may enter a queue, which could slow down the process significantly.\
|
| 481 |
-
If that happens, feel free to refresh the page. We appreciate your patience and understanding.\
|
| 482 |
-
</span>")
|
| 483 |
|
| 484 |
with gr.Column(elem_classes="custom-purple"):
|
| 485 |
gr.Markdown("### Select an example to generate music given melody and chord condition")
|
|
@@ -502,7 +197,6 @@ with gr.Blocks(css=custom_css) as demo:
|
|
| 502 |
outputs=[audio_output, piano_roll_output]
|
| 503 |
)
|
| 504 |
|
| 505 |
-
|
| 506 |
# Launch Gradio interface
|
| 507 |
if __name__ == "__main__":
|
| 508 |
demo.launch()
|
|
|
|
| 57 |
elif selected_prompt == "example 6":
|
| 58 |
return "samples/diy_examples/example6/example6.jpg"
|
| 59 |
|
| 60 |
+
# Model for generating music
|
|
|
|
| 61 |
def generate_music(prompt, tempo, num_samples=1, mode="example", rhythm_control="Yes"):
|
|
|
|
| 62 |
ldm_model = init_ldm_model(params_chord_lsh_cond, debug_mode=False)
|
| 63 |
model = Diffpro_SDF.load_trained(ldm_model, model_path).to(device)
|
| 64 |
sampler = SDFSampler(model.ldm, 64, 64, is_autocast=False, device=device, debug_mode=False)
|
|
|
|
| 99 |
if background_condition[:,4:6,:,:].min()>=0:
|
| 100 |
full_lsh_roll = extend_piano_roll(background_condition[i,4:6,:,:].cpu().numpy())
|
| 101 |
midi_file = piano_roll_to_midi(full_roll, full_chd_roll, full_lsh_roll, bpm=tempo)
|
|
|
|
| 102 |
filename = f"output_{i}.mid"
|
| 103 |
save_midi(midi_file, filename)
|
| 104 |
subprocess.Popen(['timidity',f'output_{i}.mid','-Ow','-o',f'output_{i}.wav']).communicate()
|
|
|
|
| 123 |
plt.savefig(output_image_path)
|
| 124 |
return output_image_path
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
# Gradio main function
|
| 127 |
def generate_from_example(prompt):
|
| 128 |
+
midi_output, audio_output, midi = generate_music(prompt, tempo=80, mode="example", rhythm_control="No")
|
| 129 |
piano_roll_image = visualize_midi(midi)
|
| 130 |
return audio_output, piano_roll_image
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
# Prompt list
|
| 133 |
prompt_list = ["example 1", "example 2", "example 3", "example 4"]
|
|
|
|
|
|
|
| 134 |
|
| 135 |
custom_css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
.custom-purple {
|
| 137 |
background-color: #d7bde2;
|
| 138 |
padding: 10px;
|
|
|
|
| 143 |
}
|
| 144 |
"""
|
| 145 |
|
|
|
|
| 146 |
with gr.Blocks(css=custom_css) as demo:
|
| 147 |
+
gr.Markdown("# <div style='text-align: center;font-size:40px'> Efficient Fine-Grained Guidance for Diffusion Model Based Symbolic Music Generation <div style='text-align: center;'>")
|
| 148 |
|
| 149 |
+
gr.Markdown("<div style='text-align: center;font-size:20px'>Tingyu Zhu<sup>*</sup>, Haoyu Liu<sup>*</sup>, Ziyu Wang, Zhimin Jiang, Zeyu Zheng</div>")
|
| 150 |
+
gr.Markdown("<div style='text-align: center;font-size:20px'><a href='https://arxiv.org/abs/2410.08435'>[Paper]</a> <a href='https://github.com/huajianduzhuo-code/FGG-music-code'>[Code Repo]</a></div>")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
gr.Markdown("<span style='font-size:25px;'> For detailed information and demonstrations of our method, please visit our [GitHub Pages site](https://huajianduzhuo-code.github.io/FGG-diffusion-music/) to explore:\
|
| 153 |
+
\n   1. Accompaniment Generation given Melody and Chord\
|
| 154 |
+
\n   2. Style-Controlled Music Generation\
|
| 155 |
+
\n   3. Demonstrating the Effectiveness of Sampling Control by Comparison</span>")
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
gr.HTML("<div style='height: 50px;'></div>")
|
| 158 |
gr.Markdown("\n\n\n")
|
| 159 |
+
gr.Markdown("# <span style='color: red;'> Interactive Demo </span>")
|
| 160 |
+
gr.Markdown(
|
| 161 |
+
"<span style='font-size:20px;'>"
|
| 162 |
+
"🎵 Try out our interactive tool to generate music with our model!<br>"
|
| 163 |
+
"You can create new accompaniments conditioned on a given melody and chord progression."
|
| 164 |
+
"</span>"
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
gr.Markdown(
|
| 168 |
+
"<span style='color:blue; font-size:20px;'>"
|
| 169 |
+
"⚠️ This Space currently runs on a Hugging Face-provided CPU. On average, it takes ~15 seconds to generate a 4-measure music segment.<br>"
|
| 170 |
+
"If multiple users are generating at the same time, you may enter a queue, which can cause delays.<br><br>"
|
| 171 |
+
"🚀 On our local server (NVIDIA RTX 6000 Ada GPU), the same generation takes only 0.4 seconds.<br><br>"
|
| 172 |
+
"To speed things up, you can: <br>"
|
| 173 |
+
"• 🔁 Fork this Space and select a different hardware configuration<br>"
|
| 174 |
+
"• 🧑💻 Clone our <a href='https://github.com/huajianduzhuo-code/FGG-music-code'>[Code Repo]</a> and run the generation notebooks locally after installing dependencies and downloading the model weights."
|
| 175 |
+
"</span>"
|
| 176 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
with gr.Column(elem_classes="custom-purple"):
|
| 180 |
gr.Markdown("### Select an example to generate music given melody and chord condition")
|
|
|
|
| 197 |
outputs=[audio_output, piano_roll_output]
|
| 198 |
)
|
| 199 |
|
|
|
|
| 200 |
# Launch Gradio interface
|
| 201 |
if __name__ == "__main__":
|
| 202 |
demo.launch()
|
generation/__pycache__/gen_utils.cpython-39.pyc
CHANGED
|
Binary files a/generation/__pycache__/gen_utils.cpython-39.pyc and b/generation/__pycache__/gen_utils.cpython-39.pyc differ
|
|
|
model/__pycache__/__init__.cpython-39.pyc
CHANGED
|
Binary files a/model/__pycache__/__init__.cpython-39.pyc and b/model/__pycache__/__init__.cpython-39.pyc differ
|
|
|
model/__pycache__/latent_diffusion.cpython-39.pyc
CHANGED
|
Binary files a/model/__pycache__/latent_diffusion.cpython-39.pyc and b/model/__pycache__/latent_diffusion.cpython-39.pyc differ
|
|
|
model/__pycache__/model_sdf.cpython-39.pyc
CHANGED
|
Binary files a/model/__pycache__/model_sdf.cpython-39.pyc and b/model/__pycache__/model_sdf.cpython-39.pyc differ
|
|
|
model/__pycache__/sampler_sdf.cpython-39.pyc
CHANGED
|
Binary files a/model/__pycache__/sampler_sdf.cpython-39.pyc and b/model/__pycache__/sampler_sdf.cpython-39.pyc differ
|
|
|
model/architecture/__pycache__/unet.cpython-39.pyc
CHANGED
|
Binary files a/model/architecture/__pycache__/unet.cpython-39.pyc and b/model/architecture/__pycache__/unet.cpython-39.pyc differ
|
|
|
model/architecture/__pycache__/unet_attention.cpython-39.pyc
CHANGED
|
Binary files a/model/architecture/__pycache__/unet_attention.cpython-39.pyc and b/model/architecture/__pycache__/unet_attention.cpython-39.pyc differ
|
|
|
output_0.mid
CHANGED
|
Binary files a/output_0.mid and b/output_0.mid differ
|
|
|
output_0.wav
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:15dcddbf23bcae2e04eb588ef0023e0e610d4b4f03709c5a777b4141a24d160e
|
| 3 |
+
size 2772208
|
piano_roll.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
train/__pycache__/__init__.cpython-39.pyc
CHANGED
|
Binary files a/train/__pycache__/__init__.cpython-39.pyc and b/train/__pycache__/__init__.cpython-39.pyc differ
|
|
|
train/__pycache__/learner.cpython-39.pyc
CHANGED
|
Binary files a/train/__pycache__/learner.cpython-39.pyc and b/train/__pycache__/learner.cpython-39.pyc differ
|
|
|
train/__pycache__/train_params.cpython-39.pyc
CHANGED
|
Binary files a/train/__pycache__/train_params.cpython-39.pyc and b/train/__pycache__/train_params.cpython-39.pyc differ
|
|
|