Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
|
| 5 |
+
# Load model sekali saja
|
| 6 |
+
MODEL_NAME = "taufiqdp/indonesian-sentiment"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 8 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
| 9 |
+
|
| 10 |
+
class_names = ['negatif', 'netral', 'positif']
|
| 11 |
+
|
| 12 |
+
def predict_sentiment(text):
|
| 13 |
+
if not text or text.strip() == "":
|
| 14 |
+
return "Teks kosong"
|
| 15 |
+
|
| 16 |
+
tokenized = tokenizer(text, return_tensors="pt")
|
| 17 |
+
with torch.inference_mode():
|
| 18 |
+
logits = model(**tokenized).logits
|
| 19 |
+
|
| 20 |
+
pred_id = logits.argmax(dim=1).item()
|
| 21 |
+
sentiment = class_names[pred_id]
|
| 22 |
+
confidence = torch.softmax(logits, dim=1)[0][pred_id].item()
|
| 23 |
+
|
| 24 |
+
return f"{sentiment} ({confidence:.2%})"
|
| 25 |
+
|
| 26 |
+
# Gradio interface
|
| 27 |
+
demo = gr.Interface(
|
| 28 |
+
fn=predict_sentiment,
|
| 29 |
+
inputs=gr.Textbox(label="Masukkan teks"),
|
| 30 |
+
outputs=gr.Textbox(label="Prediksi Sentimen"),
|
| 31 |
+
title="Indonesian Sentiment Analysis",
|
| 32 |
+
description="Model klasifikasi sentimen bahasa Indonesia (negatif, netral, positif)."
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
if __name__ == "__main__":
|
| 36 |
+
demo.launch()
|