Spaces:
Running
on
Zero
Running
on
Zero
| from diffusers_helper.hf_login import login | |
| import os | |
| os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) | |
| import gradio as gr | |
| import torch | |
| import traceback | |
| import einops | |
| import safetensors.torch as sf | |
| import numpy as np | |
| import argparse | |
| import math | |
| from PIL import Image | |
| from diffusers import AutoencoderKLHunyuanVideo | |
| from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer | |
| from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake | |
| from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp | |
| from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked | |
| from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan | |
| from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete | |
| from diffusers_helper.thread_utils import AsyncStream, async_run | |
| from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html | |
| from transformers import SiglipImageProcessor, SiglipVisionModel | |
| from diffusers_helper.clip_vision import hf_clip_vision_encode | |
| from diffusers_helper.bucket_tools import find_nearest_bucket | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--share', action='store_true') | |
| parser.add_argument("--server", type=str, default='0.0.0.0') | |
| parser.add_argument("--port", type=int, required=False) | |
| parser.add_argument("--inbrowser", action='store_true') | |
| args = parser.parse_args() | |
| # for win desktop probably use --server 127.0.0.1 --inbrowser | |
| # For linux server probably use --server 127.0.0.1 or do not use any cmd flags | |
| print(args) | |
| free_mem_gb = get_cuda_free_memory_gb(gpu) | |
| high_vram = free_mem_gb > 60 | |
| print(f'Free VRAM {free_mem_gb} GB') | |
| print(f'High-VRAM Mode: {high_vram}') | |
| text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu() | |
| text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu() | |
| tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') | |
| vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu() | |
| feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') | |
| image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu() | |
| transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu() | |
| vae.eval() | |
| text_encoder.eval() | |
| text_encoder_2.eval() | |
| image_encoder.eval() | |
| transformer.eval() | |
| if not high_vram: | |
| vae.enable_slicing() | |
| vae.enable_tiling() | |
| transformer.high_quality_fp32_output_for_inference = True | |
| print('transformer.high_quality_fp32_output_for_inference = True') | |
| transformer.to(dtype=torch.bfloat16) | |
| vae.to(dtype=torch.float16) | |
| image_encoder.to(dtype=torch.float16) | |
| text_encoder.to(dtype=torch.float16) | |
| text_encoder_2.to(dtype=torch.float16) | |
| vae.requires_grad_(False) | |
| text_encoder.requires_grad_(False) | |
| text_encoder_2.requires_grad_(False) | |
| image_encoder.requires_grad_(False) | |
| transformer.requires_grad_(False) | |
| if not high_vram: | |
| # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster | |
| DynamicSwapInstaller.install_model(transformer, device=gpu) | |
| DynamicSwapInstaller.install_model(text_encoder, device=gpu) | |
| else: | |
| text_encoder.to(gpu) | |
| text_encoder_2.to(gpu) | |
| image_encoder.to(gpu) | |
| vae.to(gpu) | |
| transformer.to(gpu) | |
| stream = AsyncStream() | |
| outputs_folder = './outputs/' | |
| os.makedirs(outputs_folder, exist_ok=True) | |
| def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf): | |
| total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) | |
| total_latent_sections = int(max(round(total_latent_sections), 1)) | |
| job_id = generate_timestamp() | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) | |
| try: | |
| # Clean GPU | |
| if not high_vram: | |
| unload_complete_models( | |
| text_encoder, text_encoder_2, image_encoder, vae, transformer | |
| ) | |
| # Text encoding | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) | |
| if not high_vram: | |
| fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode. | |
| load_model_as_complete(text_encoder_2, target_device=gpu) | |
| llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
| if cfg == 1: | |
| llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) | |
| else: | |
| llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
| llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) | |
| llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) | |
| # Processing input image | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) | |
| H, W, C = input_image.shape | |
| height, width = find_nearest_bucket(H, W, resolution=640) | |
| input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) | |
| Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) | |
| input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 | |
| input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] | |
| # VAE encoding | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) | |
| if not high_vram: | |
| load_model_as_complete(vae, target_device=gpu) | |
| start_latent = vae_encode(input_image_pt, vae) | |
| # CLIP Vision | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) | |
| if not high_vram: | |
| load_model_as_complete(image_encoder, target_device=gpu) | |
| image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) | |
| image_encoder_last_hidden_state = image_encoder_output.last_hidden_state | |
| # Dtype | |
| llama_vec = llama_vec.to(transformer.dtype) | |
| llama_vec_n = llama_vec_n.to(transformer.dtype) | |
| clip_l_pooler = clip_l_pooler.to(transformer.dtype) | |
| clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) | |
| image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) | |
| # Sampling | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) | |
| rnd = torch.Generator("cpu").manual_seed(seed) | |
| history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu() | |
| history_pixels = None | |
| history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2) | |
| total_generated_latent_frames = 1 | |
| for section_index in range(total_latent_sections): | |
| if stream.input_queue.top() == 'end': | |
| stream.output_queue.push(('end', None)) | |
| return | |
| print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}') | |
| if not high_vram: | |
| unload_complete_models() | |
| move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation) | |
| if use_teacache: | |
| transformer.initialize_teacache(enable_teacache=True, num_steps=steps) | |
| else: | |
| transformer.initialize_teacache(enable_teacache=False) | |
| def callback(d): | |
| preview = d['denoised'] | |
| preview = vae_decode_fake(preview) | |
| preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) | |
| preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') | |
| if stream.input_queue.top() == 'end': | |
| stream.output_queue.push(('end', None)) | |
| raise KeyboardInterrupt('User ends the task.') | |
| current_step = d['i'] + 1 | |
| percentage = int(100.0 * current_step / steps) | |
| hint = f'Sampling {current_step}/{steps}' | |
| desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...' | |
| stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) | |
| return | |
| indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0) | |
| clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1) | |
| clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1) | |
| clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2) | |
| clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2) | |
| generated_latents = sample_hunyuan( | |
| transformer=transformer, | |
| sampler='unipc', | |
| width=width, | |
| height=height, | |
| frames=latent_window_size * 4 - 3, | |
| real_guidance_scale=cfg, | |
| distilled_guidance_scale=gs, | |
| guidance_rescale=rs, | |
| # shift=3.0, | |
| num_inference_steps=steps, | |
| generator=rnd, | |
| prompt_embeds=llama_vec, | |
| prompt_embeds_mask=llama_attention_mask, | |
| prompt_poolers=clip_l_pooler, | |
| negative_prompt_embeds=llama_vec_n, | |
| negative_prompt_embeds_mask=llama_attention_mask_n, | |
| negative_prompt_poolers=clip_l_pooler_n, | |
| device=gpu, | |
| dtype=torch.bfloat16, | |
| image_embeddings=image_encoder_last_hidden_state, | |
| latent_indices=latent_indices, | |
| clean_latents=clean_latents, | |
| clean_latent_indices=clean_latent_indices, | |
| clean_latents_2x=clean_latents_2x, | |
| clean_latent_2x_indices=clean_latent_2x_indices, | |
| clean_latents_4x=clean_latents_4x, | |
| clean_latent_4x_indices=clean_latent_4x_indices, | |
| callback=callback, | |
| ) | |
| total_generated_latent_frames += int(generated_latents.shape[2]) | |
| history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2) | |
| if not high_vram: | |
| offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) | |
| load_model_as_complete(vae, target_device=gpu) | |
| real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :] | |
| if history_pixels is None: | |
| history_pixels = vae_decode(real_history_latents, vae).cpu() | |
| else: | |
| section_latent_frames = latent_window_size * 2 | |
| overlapped_frames = latent_window_size * 4 - 3 | |
| current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu() | |
| history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames) | |
| if not high_vram: | |
| unload_complete_models() | |
| output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') | |
| save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf) | |
| print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') | |
| stream.output_queue.push(('file', output_filename)) | |
| except: | |
| traceback.print_exc() | |
| if not high_vram: | |
| unload_complete_models( | |
| text_encoder, text_encoder_2, image_encoder, vae, transformer | |
| ) | |
| stream.output_queue.push(('end', None)) | |
| return | |
| def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf): | |
| global stream | |
| assert input_image is not None, 'No input image!' | |
| yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
| stream = AsyncStream() | |
| async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf) | |
| output_filename = None | |
| while True: | |
| flag, data = stream.output_queue.next() | |
| if flag == 'file': | |
| output_filename = data | |
| yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) | |
| if flag == 'progress': | |
| preview, desc, html = data | |
| yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) | |
| if flag == 'end': | |
| yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) | |
| break | |
| def end_process(): | |
| stream.input_queue.push('end') | |
| quick_prompts = [ | |
| 'The girl dances gracefully, with clear movements, full of charm.', | |
| 'A character doing some simple body movements.', | |
| ] | |
| quick_prompts = [[x] for x in quick_prompts] | |
| css = make_progress_bar_css() | |
| block = gr.Blocks(css=css).queue() | |
| with block: | |
| gr.Markdown('# FramePack-F1') | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320) | |
| prompt = gr.Textbox(label="Prompt", value='') | |
| example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt]) | |
| example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False) | |
| with gr.Row(): | |
| start_button = gr.Button(value="Start Generation") | |
| end_button = gr.Button(value="End Generation", interactive=False) | |
| with gr.Group(): | |
| use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.') | |
| n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used | |
| seed = gr.Number(label="Seed", value=31337, precision=0) | |
| total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1) | |
| latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.') | |
| cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change | |
| gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.') | |
| rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change | |
| gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.") | |
| mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ") | |
| with gr.Column(): | |
| preview_image = gr.Image(label="Next Latents", height=200, visible=False) | |
| result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True) | |
| progress_desc = gr.Markdown('', elem_classes='no-generating-animation') | |
| progress_bar = gr.HTML('', elem_classes='no-generating-animation') | |
| gr.HTML('<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>') | |
| ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf] | |
| start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]) | |
| end_button.click(fn=end_process) | |
| block.launch( | |
| server_name=args.server, | |
| server_port=args.port, | |
| share=args.share, | |
| inbrowser=args.inbrowser, | |
| ) |