Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import snapshot_download, hf_hub_download
|
| 2 |
+
|
| 3 |
+
snapshot_download(
|
| 4 |
+
repo_id="Wan-AI/Wan2.1-T2V-1.3B",
|
| 5 |
+
local_dir="wan_models/Wan2.1-T2V-1.3B",
|
| 6 |
+
local_dir_use_symlinks=False,
|
| 7 |
+
resume_download=True,
|
| 8 |
+
repo_type="model"
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
hf_hub_download(
|
| 12 |
+
repo_id="gdhe17/Self-Forcing",
|
| 13 |
+
filename="checkpoints/self_forcing_dmd.pt",
|
| 14 |
+
local_dir=".",
|
| 15 |
+
local_dir_use_symlinks=False
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
import os
|
| 19 |
+
import re
|
| 20 |
+
import random
|
| 21 |
+
import argparse
|
| 22 |
+
import hashlib
|
| 23 |
+
import urllib.request
|
| 24 |
+
from PIL import Image
|
| 25 |
+
import spaces
|
| 26 |
+
import numpy as np
|
| 27 |
+
import torch
|
| 28 |
+
import gradio as gr
|
| 29 |
+
from omegaconf import OmegaConf
|
| 30 |
+
from tqdm import tqdm
|
| 31 |
+
import imageio # Added for final video rendering
|
| 32 |
+
|
| 33 |
+
# FastRTC imports
|
| 34 |
+
from fastrtc import WebRTC, get_turn_credentials
|
| 35 |
+
from fastrtc.utils import AdditionalOutputs, CloseStream
|
| 36 |
+
|
| 37 |
+
# Original project imports
|
| 38 |
+
from pipeline import CausalInferencePipeline
|
| 39 |
+
from demo_utils.constant import ZERO_VAE_CACHE
|
| 40 |
+
from demo_utils.vae_block3 import VAEDecoderWrapper
|
| 41 |
+
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder
|
| 42 |
+
from demo_utils.memory import gpu, get_cuda_free_memory_gb, DynamicSwapInstaller
|
| 43 |
+
|
| 44 |
+
# --- Argument Parsing ---
|
| 45 |
+
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with FastRTC")
|
| 46 |
+
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.")
|
| 47 |
+
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.")
|
| 48 |
+
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt', help="Path to the model checkpoint.")
|
| 49 |
+
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.")
|
| 50 |
+
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.")
|
| 51 |
+
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.")
|
| 52 |
+
args = parser.parse_args()
|
| 53 |
+
|
| 54 |
+
# --- Global Setup & Model Loading ---
|
| 55 |
+
print(f"CUDA device: {gpu}")
|
| 56 |
+
print(f'Initial Free VRAM: {get_cuda_free_memory_gb(gpu):.2f} GB')
|
| 57 |
+
LOW_MEMORY = get_cuda_free_memory_gb(gpu) < 40
|
| 58 |
+
|
| 59 |
+
# Load configs
|
| 60 |
+
try:
|
| 61 |
+
config = OmegaConf.load(args.config_path)
|
| 62 |
+
default_config = OmegaConf.load("configs/default_config.yaml")
|
| 63 |
+
config = OmegaConf.merge(default_config, config)
|
| 64 |
+
except FileNotFoundError as e:
|
| 65 |
+
print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.")
|
| 66 |
+
exit(1)
|
| 67 |
+
|
| 68 |
+
# Initialize Models
|
| 69 |
+
print("Initializing models...")
|
| 70 |
+
text_encoder = WanTextEncoder()
|
| 71 |
+
transformer = WanDiffusionWrapper(is_causal=True)
|
| 72 |
+
|
| 73 |
+
try:
|
| 74 |
+
state_dict = torch.load(args.checkpoint_path, map_location="cpu")
|
| 75 |
+
transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator')))
|
| 76 |
+
except FileNotFoundError as e:
|
| 77 |
+
print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.")
|
| 78 |
+
exit(1)
|
| 79 |
+
|
| 80 |
+
# Prepare models for inference
|
| 81 |
+
text_encoder.eval().to(dtype=torch.bfloat16).requires_grad_(False)
|
| 82 |
+
transformer.eval().to(dtype=torch.float16).requires_grad_(False)
|
| 83 |
+
|
| 84 |
+
if LOW_MEMORY:
|
| 85 |
+
print("Low memory mode enabled. Using dynamic model swapping.")
|
| 86 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
| 87 |
+
else:
|
| 88 |
+
text_encoder.to(gpu)
|
| 89 |
+
transformer.to(gpu)
|
| 90 |
+
|
| 91 |
+
# --- VAE Decoder Management ---
|
| 92 |
+
APP_STATE = {
|
| 93 |
+
"torch_compile_applied": False,
|
| 94 |
+
"fp8_applied": False,
|
| 95 |
+
"current_use_taehv": False,
|
| 96 |
+
"current_vae_decoder": None,
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
def initialize_vae_decoder(use_taehv=False, use_trt=False):
|
| 100 |
+
global APP_STATE
|
| 101 |
+
|
| 102 |
+
if use_trt:
|
| 103 |
+
from demo_utils.vae import VAETRTWrapper
|
| 104 |
+
print("Initializing TensorRT VAE Decoder...")
|
| 105 |
+
vae_decoder = VAETRTWrapper()
|
| 106 |
+
APP_STATE["current_use_taehv"] = False
|
| 107 |
+
elif use_taehv:
|
| 108 |
+
print("Initializing TAEHV VAE Decoder...")
|
| 109 |
+
from demo_utils.taehv import TAEHV
|
| 110 |
+
taehv_checkpoint_path = "checkpoints/taew2_1.pth"
|
| 111 |
+
if not os.path.exists(taehv_checkpoint_path):
|
| 112 |
+
print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...")
|
| 113 |
+
os.makedirs("checkpoints", exist_ok=True)
|
| 114 |
+
download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth"
|
| 115 |
+
try:
|
| 116 |
+
urllib.request.urlretrieve(download_url, taehv_checkpoint_path)
|
| 117 |
+
except Exception as e:
|
| 118 |
+
raise RuntimeError(f"Failed to download taew2_1.pth: {e}")
|
| 119 |
+
|
| 120 |
+
class DotDict(dict): __getattr__ = dict.get
|
| 121 |
+
|
| 122 |
+
class TAEHVDiffusersWrapper(torch.nn.Module):
|
| 123 |
+
def __init__(self):
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.dtype = torch.float16
|
| 126 |
+
self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype)
|
| 127 |
+
self.config = DotDict(scaling_factor=1.0)
|
| 128 |
+
def decode(self, latents, return_dict=None):
|
| 129 |
+
return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1)
|
| 130 |
+
|
| 131 |
+
vae_decoder = TAEHVDiffusersWrapper()
|
| 132 |
+
APP_STATE["current_use_taehv"] = True
|
| 133 |
+
else:
|
| 134 |
+
print("Initializing Default VAE Decoder...")
|
| 135 |
+
vae_decoder = VAEDecoderWrapper()
|
| 136 |
+
try:
|
| 137 |
+
vae_state_dict = torch.load('wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth', map_location="cpu")
|
| 138 |
+
decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k}
|
| 139 |
+
vae_decoder.load_state_dict(decoder_state_dict)
|
| 140 |
+
except FileNotFoundError:
|
| 141 |
+
print("Warning: Default VAE weights not found.")
|
| 142 |
+
APP_STATE["current_use_taehv"] = False
|
| 143 |
+
|
| 144 |
+
vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu)
|
| 145 |
+
APP_STATE["current_vae_decoder"] = vae_decoder
|
| 146 |
+
print(f"✅ VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}")
|
| 147 |
+
|
| 148 |
+
# Initialize with default VAE
|
| 149 |
+
initialize_vae_decoder(use_taehv=False, use_trt=args.trt)
|
| 150 |
+
|
| 151 |
+
# --- Additional Outputs Handler ---
|
| 152 |
+
def handle_additional_outputs(status_html_update, video_update, webrtc_output):
|
| 153 |
+
return status_html_update, video_update, webrtc_output
|
| 154 |
+
|
| 155 |
+
# --- FastRTC Video Generation Handler ---
|
| 156 |
+
@torch.no_grad()
|
| 157 |
+
@spaces.GPU
|
| 158 |
+
def video_generation_handler(prompt, seed, enable_torch_compile, enable_fp8, use_taehv, progress=gr.Progress()):
|
| 159 |
+
"""
|
| 160 |
+
Generator function that yields BGR NumPy frames for real-time streaming.
|
| 161 |
+
Returns cleanly when done - no infinite loops.
|
| 162 |
+
"""
|
| 163 |
+
global APP_STATE
|
| 164 |
+
|
| 165 |
+
if seed == -1:
|
| 166 |
+
seed = random.randint(0, 2**32 - 1)
|
| 167 |
+
|
| 168 |
+
print(f"🎬 Starting video generation with prompt: '{prompt}' and seed: {seed}")
|
| 169 |
+
|
| 170 |
+
# --- Model & Pipeline Configuration ---
|
| 171 |
+
if use_taehv != APP_STATE["current_use_taehv"]:
|
| 172 |
+
print(f"🔄 Switching VAE to {'TAEHV' if use_taehv else 'Default VAE'}")
|
| 173 |
+
initialize_vae_decoder(use_taehv=use_taehv, use_trt=args.trt)
|
| 174 |
+
|
| 175 |
+
pipeline = CausalInferencePipeline(
|
| 176 |
+
config, device=gpu, generator=transformer, text_encoder=text_encoder,
|
| 177 |
+
vae=APP_STATE["current_vae_decoder"]
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
if enable_fp8 and not APP_STATE["fp8_applied"]:
|
| 181 |
+
print("⚡ Applying FP8 Quantization...")
|
| 182 |
+
from torchao.quantization.quant_api import quantize_, Float8DynamicActivationFloat8Weight, PerTensor
|
| 183 |
+
quantize_(pipeline.generator.model, Float8DynamicActivationFloat8Weight(granularity=PerTensor()))
|
| 184 |
+
APP_STATE["fp8_applied"] = True
|
| 185 |
+
|
| 186 |
+
if enable_torch_compile and not APP_STATE["torch_compile_applied"]:
|
| 187 |
+
print("🔥 Applying torch.compile (this may take a few minutes)...")
|
| 188 |
+
pipeline.generator.model = torch.compile(pipeline.generator.model, mode="max-autotune-no-cudagraphs")
|
| 189 |
+
if not use_taehv and not LOW_MEMORY and not args.trt:
|
| 190 |
+
pipeline.vae.decoder = torch.compile(pipeline.vae.decoder, mode="max-autotune-no-cudagraphs")
|
| 191 |
+
APP_STATE["torch_compile_applied"] = True
|
| 192 |
+
|
| 193 |
+
print("🔤 Encoding text prompt...")
|
| 194 |
+
conditional_dict = text_encoder(text_prompts=[prompt])
|
| 195 |
+
for key, value in conditional_dict.items():
|
| 196 |
+
conditional_dict[key] = value.to(dtype=torch.float16)
|
| 197 |
+
|
| 198 |
+
# --- Generation Loop ---
|
| 199 |
+
rnd = torch.Generator(gpu).manual_seed(int(seed))
|
| 200 |
+
pipeline._initialize_kv_cache(1, torch.float16, gpu)
|
| 201 |
+
pipeline._initialize_crossattn_cache(1, torch.float16, gpu)
|
| 202 |
+
noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd)
|
| 203 |
+
|
| 204 |
+
vae_cache, latents_cache = None, None
|
| 205 |
+
if not APP_STATE["current_use_taehv"] and not args.trt:
|
| 206 |
+
vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE]
|
| 207 |
+
|
| 208 |
+
num_blocks = 7
|
| 209 |
+
current_start_frame = 0
|
| 210 |
+
all_num_frames = [pipeline.num_frame_per_block] * num_blocks
|
| 211 |
+
|
| 212 |
+
total_frames_yielded = 0
|
| 213 |
+
all_frames_for_video = [] # To collect frames for final video
|
| 214 |
+
|
| 215 |
+
for idx, current_num_frames in enumerate(all_num_frames):
|
| 216 |
+
print(f"📦 Processing block {idx+1}/{num_blocks} with {current_num_frames} frames")
|
| 217 |
+
|
| 218 |
+
noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames]
|
| 219 |
+
|
| 220 |
+
for step_idx, current_timestep in enumerate(pipeline.denoising_step_list):
|
| 221 |
+
timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep
|
| 222 |
+
_, denoised_pred = pipeline.generator(
|
| 223 |
+
noisy_image_or_video=noisy_input, conditional_dict=conditional_dict,
|
| 224 |
+
timestep=timestep, kv_cache=pipeline.kv_cache1,
|
| 225 |
+
crossattn_cache=pipeline.crossattn_cache,
|
| 226 |
+
current_start=current_start_frame * pipeline.frame_seq_length
|
| 227 |
+
)
|
| 228 |
+
if step_idx < len(pipeline.denoising_step_list) - 1:
|
| 229 |
+
next_timestep = pipeline.denoising_step_list[step_idx + 1]
|
| 230 |
+
noisy_input = pipeline.scheduler.add_noise(
|
| 231 |
+
denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)),
|
| 232 |
+
next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long)
|
| 233 |
+
).unflatten(0, denoised_pred.shape[:2])
|
| 234 |
+
|
| 235 |
+
if idx < len(all_num_frames) - 1:
|
| 236 |
+
pipeline.generator(
|
| 237 |
+
noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict,
|
| 238 |
+
timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1,
|
| 239 |
+
crossattn_cache=pipeline.crossattn_cache,
|
| 240 |
+
current_start=current_start_frame * pipeline.frame_seq_length,
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
# Decode to pixels
|
| 244 |
+
if args.trt:
|
| 245 |
+
pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache)
|
| 246 |
+
elif APP_STATE["current_use_taehv"]:
|
| 247 |
+
if latents_cache is None:
|
| 248 |
+
latents_cache = denoised_pred
|
| 249 |
+
else:
|
| 250 |
+
denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1)
|
| 251 |
+
latents_cache = denoised_pred[:, -3:]
|
| 252 |
+
pixels = pipeline.vae.decode(denoised_pred)
|
| 253 |
+
else:
|
| 254 |
+
pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache)
|
| 255 |
+
|
| 256 |
+
# Handle frame skipping for first block
|
| 257 |
+
if idx == 0 and not args.trt:
|
| 258 |
+
pixels = pixels[:, 3:]
|
| 259 |
+
elif APP_STATE["current_use_taehv"] and idx > 0:
|
| 260 |
+
pixels = pixels[:, 12:]
|
| 261 |
+
|
| 262 |
+
print(f"📹 Decoded pixels shape: {pixels.shape}")
|
| 263 |
+
|
| 264 |
+
# Yield individual frames WITH status updates
|
| 265 |
+
for frame_idx in range(pixels.shape[1]):
|
| 266 |
+
frame_tensor = pixels[0, frame_idx] # Get single frame [C, H, W]
|
| 267 |
+
|
| 268 |
+
# Normalize from [-1, 1] to [0, 255]
|
| 269 |
+
frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5
|
| 270 |
+
frame_np = frame_np.to(torch.uint8).cpu().numpy()
|
| 271 |
+
|
| 272 |
+
# Convert from CHW to HWC format
|
| 273 |
+
frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC
|
| 274 |
+
|
| 275 |
+
all_frames_for_video.append(frame_np)
|
| 276 |
+
|
| 277 |
+
# Convert RGB to BGR for FastRTC (OpenCV format)
|
| 278 |
+
frame_bgr = frame_np[:, :, ::-1] # RGB -> BGR
|
| 279 |
+
|
| 280 |
+
total_frames_yielded += 1
|
| 281 |
+
print(f"📺 Yielding frame {total_frames_yielded}: shape {frame_bgr.shape}, dtype {frame_bgr.dtype}")
|
| 282 |
+
|
| 283 |
+
# Calculate progress
|
| 284 |
+
total_expected_frames = num_blocks * pipeline.num_frame_per_block
|
| 285 |
+
current_frame_count = (idx * pipeline.num_frame_per_block) + frame_idx + 1
|
| 286 |
+
frame_progress = 100 * (current_frame_count / total_expected_frames)
|
| 287 |
+
|
| 288 |
+
# --- REVISED HTML START ---
|
| 289 |
+
if frame_idx == pixels.shape[1] - 1 and idx + 1 == num_blocks: # last frame
|
| 290 |
+
status_html = (
|
| 291 |
+
f"<div style='padding: 16px; border: 1px solid #198754; background-color: #d1e7dd; border-radius: 8px; font-family: sans-serif; text-align: center;'>"
|
| 292 |
+
f" <h4 style='margin: 0 0 8px 0; color: #0f5132; font-size: 18px;'>🎉 Generation Complete!</h4>"
|
| 293 |
+
f" <p style='margin: 0; color: #0f5132;'>"
|
| 294 |
+
f" Total frames: {total_frames_yielded}. The final video is now available."
|
| 295 |
+
f" </p>"
|
| 296 |
+
f"</div>"
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
print("💾 Saving final rendered video...")
|
| 300 |
+
video_update = gr.update() # Default to no-op
|
| 301 |
+
try:
|
| 302 |
+
video_path = f"gradio_tmp/{seed}_{hashlib.md5(prompt.encode()).hexdigest()}.mp4"
|
| 303 |
+
imageio.mimwrite(video_path, all_frames_for_video, fps=15, quality=8)
|
| 304 |
+
print(f"✅ Video saved to {video_path}")
|
| 305 |
+
video_update = gr.update(value=video_path, visible=True)
|
| 306 |
+
except Exception as e:
|
| 307 |
+
print(f"⚠️ Could not save final video: {e}")
|
| 308 |
+
|
| 309 |
+
yield frame_bgr, AdditionalOutputs(status_html, video_update, gr.update(visible=False))
|
| 310 |
+
yield CloseStream("🎉 Video generation completed successfully!")
|
| 311 |
+
return
|
| 312 |
+
else: # Regular frames - simpler status
|
| 313 |
+
status_html = (
|
| 314 |
+
f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>"
|
| 315 |
+
f" <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>"
|
| 316 |
+
# Correctly implemented progress bar
|
| 317 |
+
f" <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>"
|
| 318 |
+
f" <div style='width: {frame_progress:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>"
|
| 319 |
+
f" </div>"
|
| 320 |
+
f" <p style='margin: 8px 0 0 0; color: #555; font-size: 14px; text-align: right;'>"
|
| 321 |
+
f" Block {idx+1}/{num_blocks} | Frame {total_frames_yielded} | {frame_progress:.1f}%"
|
| 322 |
+
f" </p>"
|
| 323 |
+
f"</div>"
|
| 324 |
+
)
|
| 325 |
+
# --- REVISED HTML END ---
|
| 326 |
+
|
| 327 |
+
yield frame_bgr, AdditionalOutputs(status_html, gr.update(visible=False), gr.update(visible=True))
|
| 328 |
+
|
| 329 |
+
current_start_frame += current_num_frames
|
| 330 |
+
|
| 331 |
+
print(f"✅ Video generation completed! Total frames yielded: {total_frames_yielded}")
|
| 332 |
+
|
| 333 |
+
# Signal completion
|
| 334 |
+
yield CloseStream("🎉 Video generation completed successfully!")
|
| 335 |
+
|
| 336 |
+
# --- Gradio UI Layout ---
|
| 337 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Self-Forcing FastRTC Demo") as demo:
|
| 338 |
+
gr.Markdown("# 🚀 Self-Forcing Video Generation with FastRTC Streaming")
|
| 339 |
+
gr.Markdown("*Real-time video generation streaming via WebRTC*")
|
| 340 |
+
|
| 341 |
+
with gr.Row():
|
| 342 |
+
with gr.Column(scale=2):
|
| 343 |
+
gr.Markdown("### 📝 Configure Generation")
|
| 344 |
+
with gr.Group():
|
| 345 |
+
prompt = gr.Textbox(
|
| 346 |
+
label="Prompt",
|
| 347 |
+
placeholder="A stylish woman walks down a Tokyo street...",
|
| 348 |
+
lines=4,
|
| 349 |
+
value="A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage."
|
| 350 |
+
)
|
| 351 |
+
gr.Examples(
|
| 352 |
+
examples=[
|
| 353 |
+
"A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse.",
|
| 354 |
+
"A white and orange tabby cat is seen happily darting through a dense garden, as if chasing something. Its eyes are wide and happy as it jogs forward, scanning the branches, flowers, and leaves.",
|
| 355 |
+
"A drone shot of a surfer riding a wave on a sunny day. The camera follows the surfer as they carve through the water.",
|
| 356 |
+
],
|
| 357 |
+
inputs=[prompt]
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
with gr.Row():
|
| 361 |
+
seed = gr.Number(label="Seed", value=-1, info="Use -1 for a random seed.")
|
| 362 |
+
|
| 363 |
+
with gr.Accordion("⚙️ Performance Options", open=False):
|
| 364 |
+
gr.Markdown("*These optimizations are applied once per session*")
|
| 365 |
+
with gr.Row():
|
| 366 |
+
torch_compile_toggle = gr.Checkbox(label="🔥 torch.compile", value=False)
|
| 367 |
+
fp8_toggle = gr.Checkbox(label="⚡ FP8 Quantization", value=False, visible=not args.trt)
|
| 368 |
+
taehv_toggle = gr.Checkbox(label="⚡ TAEHV VAE", value=False, visible=not args.trt)
|
| 369 |
+
|
| 370 |
+
start_btn = gr.Button("🎬 Start Generation", variant="primary", size="lg")
|
| 371 |
+
|
| 372 |
+
with gr.Column(scale=3):
|
| 373 |
+
gr.Markdown("### 📺 Live Video Stream")
|
| 374 |
+
gr.Markdown("*Click 'Start Generation' to begin streaming*")
|
| 375 |
+
|
| 376 |
+
try:
|
| 377 |
+
rtc_config = get_turn_credentials()
|
| 378 |
+
except Exception as e:
|
| 379 |
+
print(f"Warning: Could not get TURN credentials: {e}")
|
| 380 |
+
rtc_config = None
|
| 381 |
+
|
| 382 |
+
webrtc_output = WebRTC(
|
| 383 |
+
label="Generated Video Stream",
|
| 384 |
+
modality="video",
|
| 385 |
+
mode="receive", # Server sends video to client
|
| 386 |
+
height=480,
|
| 387 |
+
width=832,
|
| 388 |
+
rtc_configuration=rtc_config,
|
| 389 |
+
elem_id="video_stream"
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
final_video = gr.Video(label="Final Rendered Video", visible=False, interactive=False)
|
| 393 |
+
|
| 394 |
+
status_html = gr.HTML(
|
| 395 |
+
value="<div style='text-align: center; padding: 20px; color: #666;'>Ready to start generation...</div>",
|
| 396 |
+
label="Generation Status"
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
# Connect the generator to the WebRTC stream
|
| 402 |
+
webrtc_output.stream(
|
| 403 |
+
fn=video_generation_handler,
|
| 404 |
+
inputs=[prompt, seed, torch_compile_toggle, fp8_toggle, taehv_toggle],
|
| 405 |
+
outputs=[webrtc_output],
|
| 406 |
+
time_limit=300, # 5 minutes max
|
| 407 |
+
trigger=start_btn.click,
|
| 408 |
+
)
|
| 409 |
+
# MODIFIED: Handle additional outputs (status updates AND final video)
|
| 410 |
+
webrtc_output.on_additional_outputs(
|
| 411 |
+
fn=handle_additional_outputs,
|
| 412 |
+
outputs=[status_html, final_video, webrtc_output]
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
# --- Launch App ---
|
| 416 |
+
if __name__ == "__main__":
|
| 417 |
+
if os.path.exists("gradio_tmp"):
|
| 418 |
+
import shutil
|
| 419 |
+
shutil.rmtree("gradio_tmp")
|
| 420 |
+
os.makedirs("gradio_tmp", exist_ok=True)
|
| 421 |
+
|
| 422 |
+
demo.queue().launch(
|
| 423 |
+
server_name=args.host,
|
| 424 |
+
server_port=args.port,
|
| 425 |
+
share=args.share,
|
| 426 |
+
show_error=True
|
| 427 |
+
)
|