Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,6 +24,7 @@ import random
|
|
| 24 |
import argparse
|
| 25 |
import hashlib
|
| 26 |
import urllib.request
|
|
|
|
| 27 |
from PIL import Image
|
| 28 |
import spaces
|
| 29 |
import numpy as np
|
|
@@ -31,27 +32,23 @@ import torch
|
|
| 31 |
import gradio as gr
|
| 32 |
from omegaconf import OmegaConf
|
| 33 |
from tqdm import tqdm
|
| 34 |
-
import imageio
|
| 35 |
-
|
| 36 |
-
# FastRTC imports
|
| 37 |
-
from fastrtc import WebRTC, get_cloudflare_turn_credentials
|
| 38 |
-
from fastrtc.utils import AdditionalOutputs #, CloseStream
|
| 39 |
|
| 40 |
# Original project imports
|
| 41 |
from pipeline import CausalInferencePipeline
|
| 42 |
from demo_utils.constant import ZERO_VAE_CACHE
|
| 43 |
from demo_utils.vae_block3 import VAEDecoderWrapper
|
| 44 |
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder
|
| 45 |
-
# from demo_utils.memory import gpu, get_cuda_free_memory_gb, DynamicSwapInstaller
|
| 46 |
|
| 47 |
# --- Argument Parsing ---
|
| 48 |
-
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with
|
| 49 |
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.")
|
| 50 |
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.")
|
| 51 |
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt', help="Path to the model checkpoint.")
|
| 52 |
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.")
|
| 53 |
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.")
|
| 54 |
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.")
|
|
|
|
| 55 |
args = parser.parse_args()
|
| 56 |
|
| 57 |
gpu = "cuda"
|
|
@@ -146,24 +143,22 @@ pipeline = CausalInferencePipeline(
|
|
| 146 |
|
| 147 |
pipeline.to(dtype=torch.float16).to(gpu)
|
| 148 |
|
| 149 |
-
# ---
|
| 150 |
-
def handle_additional_outputs(status_html_update, video_update, webrtc_output):
|
| 151 |
-
return status_html_update, video_update, webrtc_output
|
| 152 |
-
|
| 153 |
-
# --- FastRTC Video Generation Handler ---
|
| 154 |
@torch.no_grad()
|
| 155 |
@spaces.GPU
|
| 156 |
-
def video_generation_handler(prompt, seed, progress=gr.Progress()):
|
| 157 |
"""
|
| 158 |
-
Generator function that yields
|
| 159 |
-
|
| 160 |
"""
|
| 161 |
-
|
| 162 |
if seed == -1:
|
| 163 |
seed = random.randint(0, 2**32 - 1)
|
| 164 |
|
| 165 |
print(f"🎬 Starting video generation with prompt: '{prompt}' and seed: {seed}")
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
| 167 |
print("🔤 Encoding text prompt...")
|
| 168 |
conditional_dict = text_encoder(text_prompts=[prompt])
|
| 169 |
for key, value in conditional_dict.items():
|
|
@@ -184,7 +179,7 @@ def video_generation_handler(prompt, seed, progress=gr.Progress()):
|
|
| 184 |
all_num_frames = [pipeline.num_frame_per_block] * num_blocks
|
| 185 |
|
| 186 |
total_frames_yielded = 0
|
| 187 |
-
all_frames_for_video = []
|
| 188 |
|
| 189 |
for idx, current_num_frames in enumerate(all_num_frames):
|
| 190 |
print(f"📦 Processing block {idx+1}/{num_blocks} with {current_num_frames} frames")
|
|
@@ -235,7 +230,7 @@ def video_generation_handler(prompt, seed, progress=gr.Progress()):
|
|
| 235 |
|
| 236 |
print(f"📹 Decoded pixels shape: {pixels.shape}")
|
| 237 |
|
| 238 |
-
# Yield individual frames
|
| 239 |
for frame_idx in range(pixels.shape[1]):
|
| 240 |
frame_tensor = pixels[0, frame_idx] # Get single frame [C, H, W]
|
| 241 |
|
|
@@ -243,73 +238,47 @@ def video_generation_handler(prompt, seed, progress=gr.Progress()):
|
|
| 243 |
frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5
|
| 244 |
frame_np = frame_np.to(torch.uint8).cpu().numpy()
|
| 245 |
|
| 246 |
-
# Convert from CHW to HWC format
|
| 247 |
frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC
|
| 248 |
|
| 249 |
all_frames_for_video.append(frame_np)
|
| 250 |
-
|
| 251 |
-
# Convert RGB to BGR for FastRTC (OpenCV format)
|
| 252 |
-
frame_bgr = frame_np[:, :, ::-1] # RGB -> BGR
|
| 253 |
-
|
| 254 |
total_frames_yielded += 1
|
| 255 |
-
print(f"📺 Yielding frame {total_frames_yielded}: shape {frame_bgr.shape}, dtype {frame_bgr.dtype}")
|
| 256 |
|
| 257 |
# Calculate progress
|
| 258 |
total_expected_frames = num_blocks * pipeline.num_frame_per_block
|
| 259 |
current_frame_count = (idx * pipeline.num_frame_per_block) + frame_idx + 1
|
| 260 |
-
frame_progress =
|
| 261 |
-
|
| 262 |
-
#
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
print("💾 Saving final rendered video...")
|
| 274 |
-
video_update = gr.update() # Default to no-op
|
| 275 |
-
try:
|
| 276 |
-
video_path = f"gradio_tmp/{seed}_{hashlib.md5(prompt.encode()).hexdigest()}.mp4"
|
| 277 |
-
imageio.mimwrite(video_path, all_frames_for_video, fps=15, quality=8)
|
| 278 |
-
print(f"✅ Video saved to {video_path}")
|
| 279 |
-
video_update = gr.update(value=video_path, visible=True)
|
| 280 |
-
except Exception as e:
|
| 281 |
-
print(f"⚠️ Could not save final video: {e}")
|
| 282 |
-
|
| 283 |
-
yield frame_bgr, AdditionalOutputs(status_html, video_update, gr.update(visible=False))
|
| 284 |
-
# yield CloseStream("🎉 Video generation completed successfully!")
|
| 285 |
-
return
|
| 286 |
-
else: # Regular frames - simpler status
|
| 287 |
-
status_html = (
|
| 288 |
-
f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>"
|
| 289 |
-
f" <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>"
|
| 290 |
-
f" <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>"
|
| 291 |
-
f" <div style='width: {frame_progress:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>"
|
| 292 |
-
f" </div>"
|
| 293 |
-
f" <p style='margin: 8px 0 0 0; color: #555; font-size: 14px; text-align: right;'>"
|
| 294 |
-
f" Block {idx+1}/{num_blocks} | Frame {total_frames_yielded} | {frame_progress:.1f}%"
|
| 295 |
-
f" </p>"
|
| 296 |
-
f"</div>"
|
| 297 |
-
)
|
| 298 |
-
# --- REVISED HTML END ---
|
| 299 |
-
|
| 300 |
-
yield frame_bgr, AdditionalOutputs(status_html, gr.update(visible=False), gr.update(visible=True))
|
| 301 |
|
| 302 |
current_start_frame += current_num_frames
|
| 303 |
|
| 304 |
print(f"✅ Video generation completed! Total frames yielded: {total_frames_yielded}")
|
| 305 |
|
| 306 |
-
#
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
# --- Gradio UI Layout ---
|
| 310 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="Self-Forcing
|
| 311 |
-
gr.Markdown("# 🚀 Self-Forcing Video Generation with
|
| 312 |
-
gr.Markdown("*Real-time video generation
|
| 313 |
|
| 314 |
with gr.Row():
|
| 315 |
with gr.Column(scale=2):
|
|
@@ -332,47 +301,42 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Self-Forcing FastRTC Demo") as dem
|
|
| 332 |
|
| 333 |
with gr.Row():
|
| 334 |
seed = gr.Number(label="Seed", value=-1, info="Use -1 for a random seed.")
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
start_btn = gr.Button("🎬 Start Generation", variant="primary", size="lg")
|
| 340 |
|
| 341 |
with gr.Column(scale=3):
|
| 342 |
-
gr.Markdown("### 📺 Live
|
| 343 |
-
gr.Markdown("*Click 'Start Generation' to begin streaming*")
|
| 344 |
|
| 345 |
-
|
| 346 |
-
label="Generated
|
| 347 |
-
modality="video",
|
| 348 |
-
mode="receive", # Server sends video to client
|
| 349 |
height=480,
|
| 350 |
width=832,
|
| 351 |
-
|
| 352 |
-
|
| 353 |
)
|
| 354 |
-
|
| 355 |
-
final_video = gr.Video(label="Final Rendered Video", visible=False, interactive=False)
|
| 356 |
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
|
|
|
|
|
|
| 360 |
)
|
| 361 |
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
outputs=[webrtc_output],
|
| 369 |
-
time_limit=300, # 5 minutes max
|
| 370 |
-
trigger=start_btn.click,
|
| 371 |
-
)
|
| 372 |
-
# MODIFIED: Handle additional outputs (status updates AND final video)
|
| 373 |
-
webrtc_output.on_additional_outputs(
|
| 374 |
-
fn=handle_additional_outputs,
|
| 375 |
-
outputs=[status_html, final_video, webrtc_output]
|
| 376 |
)
|
| 377 |
|
| 378 |
# --- Launch App ---
|
|
|
|
| 24 |
import argparse
|
| 25 |
import hashlib
|
| 26 |
import urllib.request
|
| 27 |
+
import time
|
| 28 |
from PIL import Image
|
| 29 |
import spaces
|
| 30 |
import numpy as np
|
|
|
|
| 32 |
import gradio as gr
|
| 33 |
from omegaconf import OmegaConf
|
| 34 |
from tqdm import tqdm
|
| 35 |
+
import imageio
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Original project imports
|
| 38 |
from pipeline import CausalInferencePipeline
|
| 39 |
from demo_utils.constant import ZERO_VAE_CACHE
|
| 40 |
from demo_utils.vae_block3 import VAEDecoderWrapper
|
| 41 |
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder
|
|
|
|
| 42 |
|
| 43 |
# --- Argument Parsing ---
|
| 44 |
+
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with Frame Streaming")
|
| 45 |
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.")
|
| 46 |
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.")
|
| 47 |
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt', help="Path to the model checkpoint.")
|
| 48 |
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.")
|
| 49 |
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.")
|
| 50 |
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.")
|
| 51 |
+
parser.add_argument('--fps', type=float, default=15.0, help="Playback FPS for frame streaming.")
|
| 52 |
args = parser.parse_args()
|
| 53 |
|
| 54 |
gpu = "cuda"
|
|
|
|
| 143 |
|
| 144 |
pipeline.to(dtype=torch.float16).to(gpu)
|
| 145 |
|
| 146 |
+
# --- Frame Streaming Video Generation Handler ---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
@torch.no_grad()
|
| 148 |
@spaces.GPU
|
| 149 |
+
def video_generation_handler(prompt, seed, fps, progress=gr.Progress()):
|
| 150 |
"""
|
| 151 |
+
Generator function that yields RGB frames for display in gr.Image.
|
| 152 |
+
Includes timing delays for smooth playback.
|
| 153 |
"""
|
|
|
|
| 154 |
if seed == -1:
|
| 155 |
seed = random.randint(0, 2**32 - 1)
|
| 156 |
|
| 157 |
print(f"🎬 Starting video generation with prompt: '{prompt}' and seed: {seed}")
|
| 158 |
+
|
| 159 |
+
# Calculate frame delay based on FPS
|
| 160 |
+
frame_delay = 1.0 / fps if fps > 0 else 1.0 / 15.0
|
| 161 |
+
|
| 162 |
print("🔤 Encoding text prompt...")
|
| 163 |
conditional_dict = text_encoder(text_prompts=[prompt])
|
| 164 |
for key, value in conditional_dict.items():
|
|
|
|
| 179 |
all_num_frames = [pipeline.num_frame_per_block] * num_blocks
|
| 180 |
|
| 181 |
total_frames_yielded = 0
|
| 182 |
+
all_frames_for_video = []
|
| 183 |
|
| 184 |
for idx, current_num_frames in enumerate(all_num_frames):
|
| 185 |
print(f"📦 Processing block {idx+1}/{num_blocks} with {current_num_frames} frames")
|
|
|
|
| 230 |
|
| 231 |
print(f"📹 Decoded pixels shape: {pixels.shape}")
|
| 232 |
|
| 233 |
+
# Yield individual frames with timing delays
|
| 234 |
for frame_idx in range(pixels.shape[1]):
|
| 235 |
frame_tensor = pixels[0, frame_idx] # Get single frame [C, H, W]
|
| 236 |
|
|
|
|
| 238 |
frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5
|
| 239 |
frame_np = frame_np.to(torch.uint8).cpu().numpy()
|
| 240 |
|
| 241 |
+
# Convert from CHW to HWC format (RGB)
|
| 242 |
frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC
|
| 243 |
|
| 244 |
all_frames_for_video.append(frame_np)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
total_frames_yielded += 1
|
|
|
|
| 246 |
|
| 247 |
# Calculate progress
|
| 248 |
total_expected_frames = num_blocks * pipeline.num_frame_per_block
|
| 249 |
current_frame_count = (idx * pipeline.num_frame_per_block) + frame_idx + 1
|
| 250 |
+
frame_progress = current_frame_count / total_expected_frames
|
| 251 |
+
|
| 252 |
+
# Update progress
|
| 253 |
+
progress(frame_progress, desc=f"Frame {total_frames_yielded} | Block {idx+1}/{num_blocks}")
|
| 254 |
+
|
| 255 |
+
print(f"📺 Yielding frame {total_frames_yielded}: shape {frame_np.shape}")
|
| 256 |
+
|
| 257 |
+
# Yield frame with timing delay
|
| 258 |
+
yield gr.update(visible=True, frame_np), gr.update(visible=False)
|
| 259 |
+
|
| 260 |
+
# Sleep between frames for smooth playback (except for the last frame)
|
| 261 |
+
if not (frame_idx == pixels.shape[1] - 1 and idx + 1 == num_blocks):
|
| 262 |
+
time.sleep(frame_delay)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
current_start_frame += current_num_frames
|
| 265 |
|
| 266 |
print(f"✅ Video generation completed! Total frames yielded: {total_frames_yielded}")
|
| 267 |
|
| 268 |
+
# Save final video
|
| 269 |
+
try:
|
| 270 |
+
video_path = f"gradio_tmp/{seed}_{hashlib.md5(prompt.encode()).hexdigest()}.mp4"
|
| 271 |
+
imageio.mimwrite(video_path, all_frames_for_video, fps=fps, quality=8)
|
| 272 |
+
print(f"✅ Video saved to {video_path}")
|
| 273 |
+
return gr.update(visible=False), gr.update(value=video_path, visible=True)
|
| 274 |
+
except Exception as e:
|
| 275 |
+
print(f"⚠️ Could not save final video: {e}")
|
| 276 |
+
return None, None
|
| 277 |
|
| 278 |
# --- Gradio UI Layout ---
|
| 279 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Self-Forcing Frame Streaming Demo") as demo:
|
| 280 |
+
gr.Markdown("# 🚀 Self-Forcing Video Generation with Frame Streaming")
|
| 281 |
+
gr.Markdown("*Real-time video generation with frame-by-frame display*")
|
| 282 |
|
| 283 |
with gr.Row():
|
| 284 |
with gr.Column(scale=2):
|
|
|
|
| 301 |
|
| 302 |
with gr.Row():
|
| 303 |
seed = gr.Number(label="Seed", value=-1, info="Use -1 for a random seed.")
|
| 304 |
+
fps = gr.Slider(
|
| 305 |
+
label="Playback FPS",
|
| 306 |
+
minimum=1,
|
| 307 |
+
maximum=30,
|
| 308 |
+
value=args.fps,
|
| 309 |
+
step=1,
|
| 310 |
+
info="Frames per second for playback"
|
| 311 |
+
)
|
| 312 |
|
| 313 |
start_btn = gr.Button("🎬 Start Generation", variant="primary", size="lg")
|
| 314 |
|
| 315 |
with gr.Column(scale=3):
|
| 316 |
+
gr.Markdown("### 📺 Live Frame Stream")
|
| 317 |
+
gr.Markdown("*Click 'Start Generation' to begin frame streaming*")
|
| 318 |
|
| 319 |
+
frame_display = gr.Image(
|
| 320 |
+
label="Generated Frames",
|
|
|
|
|
|
|
| 321 |
height=480,
|
| 322 |
width=832,
|
| 323 |
+
show_label=True,
|
| 324 |
+
container=True
|
| 325 |
)
|
|
|
|
|
|
|
| 326 |
|
| 327 |
+
final_video = gr.Video(
|
| 328 |
+
label="Final Rendered Video",
|
| 329 |
+
visible=True,
|
| 330 |
+
interactive=False,
|
| 331 |
+
height=400
|
| 332 |
)
|
| 333 |
|
| 334 |
+
# Connect the generator to the image display
|
| 335 |
+
start_btn.click(
|
| 336 |
+
fn=video_generation_handler,
|
| 337 |
+
inputs=[prompt, seed, fps],
|
| 338 |
+
outputs=[frame_display, final_video],
|
| 339 |
+
show_progress="full"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
)
|
| 341 |
|
| 342 |
# --- Launch App ---
|