Spaces:
Build error
Build error
creating openai compatible server
Browse files- TurtleSoupBaseline/openai_api_server.py +71 -82
- requirements.txt +2 -0
TurtleSoupBaseline/openai_api_server.py
CHANGED
|
@@ -17,7 +17,9 @@ from transformers import AutoTokenizer, LogitsProcessor
|
|
| 17 |
from sse_starlette.sse import EventSourceResponse
|
| 18 |
|
| 19 |
EventSourceResponse.DEFAULT_PING_INTERVAL = 1000
|
| 20 |
-
MODEL_PATH =
|
|
|
|
|
|
|
| 21 |
MAX_MODEL_LENGTH = 8192
|
| 22 |
|
| 23 |
|
|
@@ -125,14 +127,16 @@ class ChatCompletionResponse(BaseModel):
|
|
| 125 |
model: str
|
| 126 |
id: str
|
| 127 |
object: Literal["chat.completion", "chat.completion.chunk"]
|
| 128 |
-
choices: List[
|
|
|
|
|
|
|
| 129 |
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
| 130 |
usage: Optional[UsageInfo] = None
|
| 131 |
|
| 132 |
|
| 133 |
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
| 134 |
def __call__(
|
| 135 |
-
|
| 136 |
) -> torch.FloatTensor:
|
| 137 |
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
| 138 |
scores.zero_()
|
|
@@ -154,13 +158,10 @@ def process_response(output: str, use_tool: bool = False) -> Union[str, dict]:
|
|
| 154 |
parameters = eval(content.strip())
|
| 155 |
content = {
|
| 156 |
"name": metadata.strip(),
|
| 157 |
-
"arguments": json.dumps(parameters, ensure_ascii=False)
|
| 158 |
}
|
| 159 |
else:
|
| 160 |
-
content = {
|
| 161 |
-
"name": metadata.strip(),
|
| 162 |
-
"content": content
|
| 163 |
-
}
|
| 164 |
return content
|
| 165 |
|
| 166 |
|
|
@@ -174,7 +175,9 @@ async def generate_stream_glm4(params):
|
|
| 174 |
top_p = float(params.get("top_p", 1.0))
|
| 175 |
max_new_tokens = int(params.get("max_tokens", 8192))
|
| 176 |
messages = process_messages(messages, tools=tools, tool_choice=tool_choice)
|
| 177 |
-
inputs = tokenizer.apply_chat_template(
|
|
|
|
|
|
|
| 178 |
params_dict = {
|
| 179 |
"n": 1,
|
| 180 |
"best_of": 1,
|
|
@@ -195,7 +198,9 @@ async def generate_stream_glm4(params):
|
|
| 195 |
"skip_special_tokens": True,
|
| 196 |
}
|
| 197 |
sampling_params = SamplingParams(**params_dict)
|
| 198 |
-
async for output in engine.generate(
|
|
|
|
|
|
|
| 199 |
output_len = len(output.outputs[0].token_ids)
|
| 200 |
input_len = len(output.prompt_token_ids)
|
| 201 |
ret = {
|
|
@@ -203,7 +208,7 @@ async def generate_stream_glm4(params):
|
|
| 203 |
"usage": {
|
| 204 |
"prompt_tokens": input_len,
|
| 205 |
"completion_tokens": output_len,
|
| 206 |
-
"total_tokens": output_len + input_len
|
| 207 |
},
|
| 208 |
"finish_reason": output.outputs[0].finish_reason,
|
| 209 |
}
|
|
@@ -218,12 +223,13 @@ def process_messages(messages, tools=None, tool_choice="none"):
|
|
| 218 |
msg_has_sys = False
|
| 219 |
|
| 220 |
def filter_tools(tool_choice, tools):
|
| 221 |
-
function_name = tool_choice.get(
|
| 222 |
if not function_name:
|
| 223 |
return []
|
| 224 |
filtered_tools = [
|
| 225 |
-
tool
|
| 226 |
-
|
|
|
|
| 227 |
]
|
| 228 |
return filtered_tools
|
| 229 |
|
|
@@ -231,13 +237,7 @@ def process_messages(messages, tools=None, tool_choice="none"):
|
|
| 231 |
if isinstance(tool_choice, dict):
|
| 232 |
tools = filter_tools(tool_choice, tools)
|
| 233 |
if tools:
|
| 234 |
-
messages.append(
|
| 235 |
-
{
|
| 236 |
-
"role": "system",
|
| 237 |
-
"content": None,
|
| 238 |
-
"tools": tools
|
| 239 |
-
}
|
| 240 |
-
)
|
| 241 |
msg_has_sys = True
|
| 242 |
|
| 243 |
# add to metadata
|
|
@@ -246,19 +246,14 @@ def process_messages(messages, tools=None, tool_choice="none"):
|
|
| 246 |
{
|
| 247 |
"role": "assistant",
|
| 248 |
"metadata": tool_choice["function"]["name"],
|
| 249 |
-
"content": ""
|
| 250 |
}
|
| 251 |
)
|
| 252 |
|
| 253 |
for m in _messages:
|
| 254 |
role, content, func_call = m.role, m.content, m.function_call
|
| 255 |
if role == "function":
|
| 256 |
-
messages.append(
|
| 257 |
-
{
|
| 258 |
-
"role": "observation",
|
| 259 |
-
"content": content
|
| 260 |
-
}
|
| 261 |
-
)
|
| 262 |
elif role == "assistant" and func_call is not None:
|
| 263 |
for response in content.split("<|assistant|>"):
|
| 264 |
if "\n" in response:
|
|
@@ -266,11 +261,7 @@ def process_messages(messages, tools=None, tool_choice="none"):
|
|
| 266 |
else:
|
| 267 |
metadata, sub_content = "", response
|
| 268 |
messages.append(
|
| 269 |
-
{
|
| 270 |
-
"role": role,
|
| 271 |
-
"metadata": metadata,
|
| 272 |
-
"content": sub_content.strip()
|
| 273 |
-
}
|
| 274 |
)
|
| 275 |
else:
|
| 276 |
if role == "system" and msg_has_sys:
|
|
@@ -315,7 +306,9 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|
| 315 |
predict_stream_generator = predict_stream(request.model, gen_params)
|
| 316 |
output = await anext(predict_stream_generator)
|
| 317 |
if output:
|
| 318 |
-
return EventSourceResponse(
|
|
|
|
|
|
|
| 319 |
logger.debug(f"First result output:\n{output}")
|
| 320 |
|
| 321 |
function_call = None
|
|
@@ -332,7 +325,9 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|
| 332 |
if not gen_params.get("messages"):
|
| 333 |
gen_params["messages"] = []
|
| 334 |
gen_params["messages"].append(ChatMessage(role="assistant", content=output))
|
| 335 |
-
gen_params["messages"].append(
|
|
|
|
|
|
|
| 336 |
generate = predict(request.model, gen_params)
|
| 337 |
return EventSourceResponse(generate, media_type="text/event-stream")
|
| 338 |
else:
|
|
@@ -354,7 +349,8 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|
| 354 |
function_call = process_response(response["text"], use_tool=True)
|
| 355 |
except:
|
| 356 |
logger.warning(
|
| 357 |
-
"Failed to parse tool call, maybe the response is not a function call(such as cogview drawing) or have been answered."
|
|
|
|
| 358 |
|
| 359 |
if isinstance(function_call, dict):
|
| 360 |
finish_reason = "function_call"
|
|
@@ -363,7 +359,9 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|
| 363 |
message = ChatMessage(
|
| 364 |
role="assistant",
|
| 365 |
content=response["text"],
|
| 366 |
-
function_call=
|
|
|
|
|
|
|
| 367 |
)
|
| 368 |
|
| 369 |
logger.debug(f"==== message ====\n{message}")
|
|
@@ -382,23 +380,23 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|
| 382 |
id="", # for open_source model, id is empty
|
| 383 |
choices=[choice_data],
|
| 384 |
object="chat.completion",
|
| 385 |
-
usage=usage
|
| 386 |
)
|
| 387 |
|
| 388 |
|
| 389 |
async def predict(model_id: str, params: dict):
|
| 390 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 391 |
-
index=0,
|
| 392 |
-
|
| 393 |
-
|
|
|
|
| 394 |
)
|
| 395 |
-
chunk = ChatCompletionResponse(model=model_id, id="", choices=[choice_data], object="chat.completion.chunk")
|
| 396 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 397 |
|
| 398 |
previous_text = ""
|
| 399 |
async for new_response in generate_stream_glm4(params):
|
| 400 |
decoded_unicode = new_response["text"]
|
| 401 |
-
delta_text = decoded_unicode[len(previous_text):]
|
| 402 |
previous_text = decoded_unicode
|
| 403 |
|
| 404 |
finish_reason = new_response["finish_reason"]
|
|
@@ -411,7 +409,8 @@ async def predict(model_id: str, params: dict):
|
|
| 411 |
function_call = process_response(decoded_unicode, use_tool=True)
|
| 412 |
except:
|
| 413 |
logger.warning(
|
| 414 |
-
"Failed to parse tool call, maybe the response is not a tool call or have been answered."
|
|
|
|
| 415 |
|
| 416 |
if isinstance(function_call, dict):
|
| 417 |
function_call = FunctionCallResponse(**function_call)
|
|
@@ -419,48 +418,42 @@ async def predict(model_id: str, params: dict):
|
|
| 419 |
delta = DeltaMessage(
|
| 420 |
content=delta_text,
|
| 421 |
role="assistant",
|
| 422 |
-
function_call=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
)
|
| 424 |
|
| 425 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 426 |
-
index=0,
|
| 427 |
-
delta=delta,
|
| 428 |
-
finish_reason=finish_reason
|
| 429 |
)
|
| 430 |
chunk = ChatCompletionResponse(
|
| 431 |
-
model=model_id,
|
| 432 |
-
id="",
|
| 433 |
-
choices=[choice_data],
|
| 434 |
-
object="chat.completion.chunk"
|
| 435 |
)
|
| 436 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 437 |
|
| 438 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 439 |
-
index=0,
|
| 440 |
-
delta=DeltaMessage(),
|
| 441 |
-
finish_reason="stop"
|
| 442 |
)
|
| 443 |
chunk = ChatCompletionResponse(
|
| 444 |
-
model=model_id,
|
| 445 |
-
id="",
|
| 446 |
-
choices=[choice_data],
|
| 447 |
-
object="chat.completion.chunk"
|
| 448 |
)
|
| 449 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 450 |
-
yield
|
| 451 |
|
| 452 |
|
| 453 |
async def predict_stream(model_id, gen_params):
|
| 454 |
output = ""
|
| 455 |
is_function_call = False
|
| 456 |
has_send_first_chunk = False
|
| 457 |
-
async
|
| 458 |
decoded_unicode = new_response["text"]
|
| 459 |
-
delta_text = decoded_unicode[len(output):]
|
| 460 |
output = decoded_unicode
|
| 461 |
|
| 462 |
if not is_function_call and len(output) > 7:
|
| 463 |
-
is_function_call = output and
|
| 464 |
if is_function_call:
|
| 465 |
continue
|
| 466 |
|
|
@@ -472,16 +465,14 @@ async def predict_stream(model_id, gen_params):
|
|
| 472 |
function_call=None,
|
| 473 |
)
|
| 474 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 475 |
-
index=0,
|
| 476 |
-
delta=message,
|
| 477 |
-
finish_reason=finish_reason
|
| 478 |
)
|
| 479 |
chunk = ChatCompletionResponse(
|
| 480 |
model=model_id,
|
| 481 |
id="",
|
| 482 |
choices=[choice_data],
|
| 483 |
created=int(time.time()),
|
| 484 |
-
object="chat.completion.chunk"
|
| 485 |
)
|
| 486 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 487 |
|
|
@@ -493,41 +484,39 @@ async def predict_stream(model_id, gen_params):
|
|
| 493 |
function_call=None,
|
| 494 |
)
|
| 495 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 496 |
-
index=0,
|
| 497 |
-
delta=message,
|
| 498 |
-
finish_reason=finish_reason
|
| 499 |
)
|
| 500 |
chunk = ChatCompletionResponse(
|
| 501 |
model=model_id,
|
| 502 |
id="",
|
| 503 |
choices=[choice_data],
|
| 504 |
created=int(time.time()),
|
| 505 |
-
object="chat.completion.chunk"
|
| 506 |
)
|
| 507 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 508 |
|
| 509 |
if is_function_call:
|
| 510 |
yield output
|
| 511 |
else:
|
| 512 |
-
yield
|
| 513 |
|
| 514 |
|
| 515 |
async def parse_output_text(model_id: str, value: str):
|
| 516 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 517 |
-
index=0,
|
| 518 |
-
|
| 519 |
-
|
|
|
|
| 520 |
)
|
| 521 |
-
chunk = ChatCompletionResponse(model=model_id, id="", choices=[choice_data], object="chat.completion.chunk")
|
| 522 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 523 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 524 |
-
index=0,
|
| 525 |
-
|
| 526 |
-
|
|
|
|
| 527 |
)
|
| 528 |
-
chunk = ChatCompletionResponse(model=model_id, id="", choices=[choice_data], object="chat.completion.chunk")
|
| 529 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 530 |
-
yield
|
| 531 |
|
| 532 |
|
| 533 |
if __name__ == "__main__":
|
|
@@ -546,4 +535,4 @@ if __name__ == "__main__":
|
|
| 546 |
max_model_len=MAX_MODEL_LENGTH,
|
| 547 |
)
|
| 548 |
engine = AsyncLLMEngine.from_engine_args(engine_args)
|
| 549 |
-
uvicorn.run(app, host=
|
|
|
|
| 17 |
from sse_starlette.sse import EventSourceResponse
|
| 18 |
|
| 19 |
EventSourceResponse.DEFAULT_PING_INTERVAL = 1000
|
| 20 |
+
MODEL_PATH = (
|
| 21 |
+
"../llama-factory/saves/internlm2_5_7b/lora/sft_bf16_p2_full/checkpoint-528"
|
| 22 |
+
)
|
| 23 |
MAX_MODEL_LENGTH = 8192
|
| 24 |
|
| 25 |
|
|
|
|
| 127 |
model: str
|
| 128 |
id: str
|
| 129 |
object: Literal["chat.completion", "chat.completion.chunk"]
|
| 130 |
+
choices: List[
|
| 131 |
+
Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]
|
| 132 |
+
]
|
| 133 |
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
| 134 |
usage: Optional[UsageInfo] = None
|
| 135 |
|
| 136 |
|
| 137 |
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
| 138 |
def __call__(
|
| 139 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
| 140 |
) -> torch.FloatTensor:
|
| 141 |
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
| 142 |
scores.zero_()
|
|
|
|
| 158 |
parameters = eval(content.strip())
|
| 159 |
content = {
|
| 160 |
"name": metadata.strip(),
|
| 161 |
+
"arguments": json.dumps(parameters, ensure_ascii=False),
|
| 162 |
}
|
| 163 |
else:
|
| 164 |
+
content = {"name": metadata.strip(), "content": content}
|
|
|
|
|
|
|
|
|
|
| 165 |
return content
|
| 166 |
|
| 167 |
|
|
|
|
| 175 |
top_p = float(params.get("top_p", 1.0))
|
| 176 |
max_new_tokens = int(params.get("max_tokens", 8192))
|
| 177 |
messages = process_messages(messages, tools=tools, tool_choice=tool_choice)
|
| 178 |
+
inputs = tokenizer.apply_chat_template(
|
| 179 |
+
messages, add_generation_prompt=True, tokenize=False
|
| 180 |
+
)
|
| 181 |
params_dict = {
|
| 182 |
"n": 1,
|
| 183 |
"best_of": 1,
|
|
|
|
| 198 |
"skip_special_tokens": True,
|
| 199 |
}
|
| 200 |
sampling_params = SamplingParams(**params_dict)
|
| 201 |
+
async for output in engine.generate(
|
| 202 |
+
inputs=inputs, sampling_params=sampling_params, request_id="glm-4-9b"
|
| 203 |
+
):
|
| 204 |
output_len = len(output.outputs[0].token_ids)
|
| 205 |
input_len = len(output.prompt_token_ids)
|
| 206 |
ret = {
|
|
|
|
| 208 |
"usage": {
|
| 209 |
"prompt_tokens": input_len,
|
| 210 |
"completion_tokens": output_len,
|
| 211 |
+
"total_tokens": output_len + input_len,
|
| 212 |
},
|
| 213 |
"finish_reason": output.outputs[0].finish_reason,
|
| 214 |
}
|
|
|
|
| 223 |
msg_has_sys = False
|
| 224 |
|
| 225 |
def filter_tools(tool_choice, tools):
|
| 226 |
+
function_name = tool_choice.get("function", {}).get("name", None)
|
| 227 |
if not function_name:
|
| 228 |
return []
|
| 229 |
filtered_tools = [
|
| 230 |
+
tool
|
| 231 |
+
for tool in tools
|
| 232 |
+
if tool.get("function", {}).get("name") == function_name
|
| 233 |
]
|
| 234 |
return filtered_tools
|
| 235 |
|
|
|
|
| 237 |
if isinstance(tool_choice, dict):
|
| 238 |
tools = filter_tools(tool_choice, tools)
|
| 239 |
if tools:
|
| 240 |
+
messages.append({"role": "system", "content": None, "tools": tools})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
msg_has_sys = True
|
| 242 |
|
| 243 |
# add to metadata
|
|
|
|
| 246 |
{
|
| 247 |
"role": "assistant",
|
| 248 |
"metadata": tool_choice["function"]["name"],
|
| 249 |
+
"content": "",
|
| 250 |
}
|
| 251 |
)
|
| 252 |
|
| 253 |
for m in _messages:
|
| 254 |
role, content, func_call = m.role, m.content, m.function_call
|
| 255 |
if role == "function":
|
| 256 |
+
messages.append({"role": "observation", "content": content})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
elif role == "assistant" and func_call is not None:
|
| 258 |
for response in content.split("<|assistant|>"):
|
| 259 |
if "\n" in response:
|
|
|
|
| 261 |
else:
|
| 262 |
metadata, sub_content = "", response
|
| 263 |
messages.append(
|
| 264 |
+
{"role": role, "metadata": metadata, "content": sub_content.strip()}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
)
|
| 266 |
else:
|
| 267 |
if role == "system" and msg_has_sys:
|
|
|
|
| 306 |
predict_stream_generator = predict_stream(request.model, gen_params)
|
| 307 |
output = await anext(predict_stream_generator)
|
| 308 |
if output:
|
| 309 |
+
return EventSourceResponse(
|
| 310 |
+
predict_stream_generator, media_type="text/event-stream"
|
| 311 |
+
)
|
| 312 |
logger.debug(f"First result output:\n{output}")
|
| 313 |
|
| 314 |
function_call = None
|
|
|
|
| 325 |
if not gen_params.get("messages"):
|
| 326 |
gen_params["messages"] = []
|
| 327 |
gen_params["messages"].append(ChatMessage(role="assistant", content=output))
|
| 328 |
+
gen_params["messages"].append(
|
| 329 |
+
ChatMessage(role="tool", name=function_call.name, content=tool_response)
|
| 330 |
+
)
|
| 331 |
generate = predict(request.model, gen_params)
|
| 332 |
return EventSourceResponse(generate, media_type="text/event-stream")
|
| 333 |
else:
|
|
|
|
| 349 |
function_call = process_response(response["text"], use_tool=True)
|
| 350 |
except:
|
| 351 |
logger.warning(
|
| 352 |
+
"Failed to parse tool call, maybe the response is not a function call(such as cogview drawing) or have been answered."
|
| 353 |
+
)
|
| 354 |
|
| 355 |
if isinstance(function_call, dict):
|
| 356 |
finish_reason = "function_call"
|
|
|
|
| 359 |
message = ChatMessage(
|
| 360 |
role="assistant",
|
| 361 |
content=response["text"],
|
| 362 |
+
function_call=(
|
| 363 |
+
function_call if isinstance(function_call, FunctionCallResponse) else None
|
| 364 |
+
),
|
| 365 |
)
|
| 366 |
|
| 367 |
logger.debug(f"==== message ====\n{message}")
|
|
|
|
| 380 |
id="", # for open_source model, id is empty
|
| 381 |
choices=[choice_data],
|
| 382 |
object="chat.completion",
|
| 383 |
+
usage=usage,
|
| 384 |
)
|
| 385 |
|
| 386 |
|
| 387 |
async def predict(model_id: str, params: dict):
|
| 388 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 389 |
+
index=0, delta=DeltaMessage(role="assistant"), finish_reason=None
|
| 390 |
+
)
|
| 391 |
+
chunk = ChatCompletionResponse(
|
| 392 |
+
model=model_id, id="", choices=[choice_data], object="chat.completion.chunk"
|
| 393 |
)
|
|
|
|
| 394 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 395 |
|
| 396 |
previous_text = ""
|
| 397 |
async for new_response in generate_stream_glm4(params):
|
| 398 |
decoded_unicode = new_response["text"]
|
| 399 |
+
delta_text = decoded_unicode[len(previous_text) :]
|
| 400 |
previous_text = decoded_unicode
|
| 401 |
|
| 402 |
finish_reason = new_response["finish_reason"]
|
|
|
|
| 409 |
function_call = process_response(decoded_unicode, use_tool=True)
|
| 410 |
except:
|
| 411 |
logger.warning(
|
| 412 |
+
"Failed to parse tool call, maybe the response is not a tool call or have been answered."
|
| 413 |
+
)
|
| 414 |
|
| 415 |
if isinstance(function_call, dict):
|
| 416 |
function_call = FunctionCallResponse(**function_call)
|
|
|
|
| 418 |
delta = DeltaMessage(
|
| 419 |
content=delta_text,
|
| 420 |
role="assistant",
|
| 421 |
+
function_call=(
|
| 422 |
+
function_call
|
| 423 |
+
if isinstance(function_call, FunctionCallResponse)
|
| 424 |
+
else None
|
| 425 |
+
),
|
| 426 |
)
|
| 427 |
|
| 428 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 429 |
+
index=0, delta=delta, finish_reason=finish_reason
|
|
|
|
|
|
|
| 430 |
)
|
| 431 |
chunk = ChatCompletionResponse(
|
| 432 |
+
model=model_id, id="", choices=[choice_data], object="chat.completion.chunk"
|
|
|
|
|
|
|
|
|
|
| 433 |
)
|
| 434 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 435 |
|
| 436 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 437 |
+
index=0, delta=DeltaMessage(), finish_reason="stop"
|
|
|
|
|
|
|
| 438 |
)
|
| 439 |
chunk = ChatCompletionResponse(
|
| 440 |
+
model=model_id, id="", choices=[choice_data], object="chat.completion.chunk"
|
|
|
|
|
|
|
|
|
|
| 441 |
)
|
| 442 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 443 |
+
yield "[DONE]"
|
| 444 |
|
| 445 |
|
| 446 |
async def predict_stream(model_id, gen_params):
|
| 447 |
output = ""
|
| 448 |
is_function_call = False
|
| 449 |
has_send_first_chunk = False
|
| 450 |
+
async for new_response in generate_stream_glm4(gen_params):
|
| 451 |
decoded_unicode = new_response["text"]
|
| 452 |
+
delta_text = decoded_unicode[len(output) :]
|
| 453 |
output = decoded_unicode
|
| 454 |
|
| 455 |
if not is_function_call and len(output) > 7:
|
| 456 |
+
is_function_call = output and "get_" in output
|
| 457 |
if is_function_call:
|
| 458 |
continue
|
| 459 |
|
|
|
|
| 465 |
function_call=None,
|
| 466 |
)
|
| 467 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 468 |
+
index=0, delta=message, finish_reason=finish_reason
|
|
|
|
|
|
|
| 469 |
)
|
| 470 |
chunk = ChatCompletionResponse(
|
| 471 |
model=model_id,
|
| 472 |
id="",
|
| 473 |
choices=[choice_data],
|
| 474 |
created=int(time.time()),
|
| 475 |
+
object="chat.completion.chunk",
|
| 476 |
)
|
| 477 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 478 |
|
|
|
|
| 484 |
function_call=None,
|
| 485 |
)
|
| 486 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 487 |
+
index=0, delta=message, finish_reason=finish_reason
|
|
|
|
|
|
|
| 488 |
)
|
| 489 |
chunk = ChatCompletionResponse(
|
| 490 |
model=model_id,
|
| 491 |
id="",
|
| 492 |
choices=[choice_data],
|
| 493 |
created=int(time.time()),
|
| 494 |
+
object="chat.completion.chunk",
|
| 495 |
)
|
| 496 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 497 |
|
| 498 |
if is_function_call:
|
| 499 |
yield output
|
| 500 |
else:
|
| 501 |
+
yield "[DONE]"
|
| 502 |
|
| 503 |
|
| 504 |
async def parse_output_text(model_id: str, value: str):
|
| 505 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 506 |
+
index=0, delta=DeltaMessage(role="assistant", content=value), finish_reason=None
|
| 507 |
+
)
|
| 508 |
+
chunk = ChatCompletionResponse(
|
| 509 |
+
model=model_id, id="", choices=[choice_data], object="chat.completion.chunk"
|
| 510 |
)
|
|
|
|
| 511 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 512 |
choice_data = ChatCompletionResponseStreamChoice(
|
| 513 |
+
index=0, delta=DeltaMessage(), finish_reason="stop"
|
| 514 |
+
)
|
| 515 |
+
chunk = ChatCompletionResponse(
|
| 516 |
+
model=model_id, id="", choices=[choice_data], object="chat.completion.chunk"
|
| 517 |
)
|
|
|
|
| 518 |
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
| 519 |
+
yield "[DONE]"
|
| 520 |
|
| 521 |
|
| 522 |
if __name__ == "__main__":
|
|
|
|
| 535 |
max_model_len=MAX_MODEL_LENGTH,
|
| 536 |
)
|
| 537 |
engine = AsyncLLMEngine.from_engine_args(engine_args)
|
| 538 |
+
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)
|
requirements.txt
CHANGED
|
@@ -14,3 +14,5 @@ langchain_openai==0.1.13
|
|
| 14 |
wandb==0.17.4
|
| 15 |
# triton
|
| 16 |
# xformers
|
|
|
|
|
|
|
|
|
| 14 |
wandb==0.17.4
|
| 15 |
# triton
|
| 16 |
# xformers
|
| 17 |
+
uvicorn
|
| 18 |
+
vllm
|