Spaces:
Build error
Build error
Delete competition/Gemma-2-9b.ipynb
Browse files- competition/Gemma-2-9b.ipynb +0 -132
competition/Gemma-2-9b.ipynb
DELETED
|
@@ -1,132 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": null,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer\n",
|
| 10 |
-
"from datasets import Dataset\n",
|
| 11 |
-
"import pandas as pd\n",
|
| 12 |
-
"from sklearn.model_selection import train_test_split\n",
|
| 13 |
-
"\n",
|
| 14 |
-
"# Load the dataset\n",
|
| 15 |
-
"file_path = 'train_en.csv'\n",
|
| 16 |
-
"dataset = pd.read_csv(file_path)\n",
|
| 17 |
-
"\n",
|
| 18 |
-
"# Map labels to expected responses\n",
|
| 19 |
-
"label_mapping = {\n",
|
| 20 |
-
" \"Yes\": 0,\n",
|
| 21 |
-
" \"No\": 1,\n",
|
| 22 |
-
" \"It doesn't matter\": 2,\n",
|
| 23 |
-
" \"Unimportant\": 2, # Assuming \"unimportant\" is synonymous with \"It doesn't matter\"\n",
|
| 24 |
-
" \"Incorrect questioning\": 3,\n",
|
| 25 |
-
" \"Correct answers\": 4\n",
|
| 26 |
-
"}\n",
|
| 27 |
-
"\n",
|
| 28 |
-
"# Apply label mapping\n",
|
| 29 |
-
"dataset['label'] = dataset['label'].map(label_mapping)\n",
|
| 30 |
-
"\n",
|
| 31 |
-
"# Handle NaN values: Drop rows where label is NaN\n",
|
| 32 |
-
"dataset = dataset.dropna(subset=['label'])\n",
|
| 33 |
-
"\n",
|
| 34 |
-
"# Ensure labels are integers\n",
|
| 35 |
-
"dataset['label'] = dataset['label'].astype(int)\n",
|
| 36 |
-
"\n",
|
| 37 |
-
"# Split the dataset into training and validation sets\n",
|
| 38 |
-
"train_df, val_df = train_test_split(dataset, test_size=0.2, random_state=42)\n",
|
| 39 |
-
"\n",
|
| 40 |
-
"# Convert the dataframes to datasets\n",
|
| 41 |
-
"train_dataset = Dataset.from_pandas(train_df)\n",
|
| 42 |
-
"val_dataset = Dataset.from_pandas(val_df)\n",
|
| 43 |
-
"\n",
|
| 44 |
-
"# Load the tokenizer and model\n",
|
| 45 |
-
"model_name = \"google/gemma-2-9b\"\n",
|
| 46 |
-
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
| 47 |
-
"model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=5)\n",
|
| 48 |
-
"\n",
|
| 49 |
-
"# Tokenize the data\n",
|
| 50 |
-
"def tokenize_function(examples):\n",
|
| 51 |
-
" return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=128)\n",
|
| 52 |
-
"\n",
|
| 53 |
-
"train_dataset = train_dataset.map(tokenize_function, batched=True)\n",
|
| 54 |
-
"val_dataset = val_dataset.map(tokenize_function, batched=True)\n",
|
| 55 |
-
"\n",
|
| 56 |
-
"# Set the format for PyTorch\n",
|
| 57 |
-
"train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])\n",
|
| 58 |
-
"val_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])\n",
|
| 59 |
-
"\n",
|
| 60 |
-
"# Define training arguments\n",
|
| 61 |
-
"training_args = TrainingArguments(\n",
|
| 62 |
-
" output_dir='./results',\n",
|
| 63 |
-
" evaluation_strategy='epoch',\n",
|
| 64 |
-
" learning_rate=2e-5,\n",
|
| 65 |
-
" per_device_train_batch_size=8,\n",
|
| 66 |
-
" per_device_eval_batch_size=8,\n",
|
| 67 |
-
" num_train_epochs=3,\n",
|
| 68 |
-
" weight_decay=0.01,\n",
|
| 69 |
-
")\n",
|
| 70 |
-
"\n",
|
| 71 |
-
"# Initialize the Trainer\n",
|
| 72 |
-
"trainer = Trainer(\n",
|
| 73 |
-
" model=model,\n",
|
| 74 |
-
" args=training_args,\n",
|
| 75 |
-
" train_dataset=train_dataset,\n",
|
| 76 |
-
" eval_dataset=val_dataset,\n",
|
| 77 |
-
")\n",
|
| 78 |
-
"\n",
|
| 79 |
-
"# Train the model\n",
|
| 80 |
-
"trainer.train()\n",
|
| 81 |
-
"\n",
|
| 82 |
-
"# Save the model\n",
|
| 83 |
-
"model.save_pretrained('trained_gemma_model')\n",
|
| 84 |
-
"tokenizer.save_pretrained('trained_gemma_model')\n",
|
| 85 |
-
"\n",
|
| 86 |
-
"# Evaluate the model\n",
|
| 87 |
-
"trainer.evaluate()"
|
| 88 |
-
]
|
| 89 |
-
},
|
| 90 |
-
{
|
| 91 |
-
"cell_type": "code",
|
| 92 |
-
"execution_count": null,
|
| 93 |
-
"metadata": {},
|
| 94 |
-
"outputs": [],
|
| 95 |
-
"source": [
|
| 96 |
-
"# Load the trained model and tokenizer\n",
|
| 97 |
-
"model = AutoModelForSequenceClassification.from_pretrained('trained_gemma_model')\n",
|
| 98 |
-
"tokenizer = AutoTokenizer.from_pretrained('trained_gemma_model')\n",
|
| 99 |
-
"\n",
|
| 100 |
-
"# Function to make predictions\n",
|
| 101 |
-
"def predict(texts):\n",
|
| 102 |
-
" inputs = tokenizer(texts, return_tensors=\"pt\", truncation=True, padding='max_length', max_length=128)\n",
|
| 103 |
-
" outputs = model(**inputs)\n",
|
| 104 |
-
" predictions = outputs.logits.argmax(dim=-1).tolist()\n",
|
| 105 |
-
" return predictions\n",
|
| 106 |
-
"\n",
|
| 107 |
-
"# Apply the predictions to the dataset\n",
|
| 108 |
-
"dataset['predicted_label'] = predict(dataset['text'].tolist())\n",
|
| 109 |
-
"\n",
|
| 110 |
-
"# Map the predicted labels back to the response texts\n",
|
| 111 |
-
"reverse_label_mapping = {v: k for k, v in label_mapping.items()}\n",
|
| 112 |
-
"dataset['predicted_label'] = dataset['predicted_label'].map(reverse_label_mapping)\n",
|
| 113 |
-
"\n",
|
| 114 |
-
"# Save the results\n",
|
| 115 |
-
"dataset.to_csv('gemma-2-9b_predicted_results.csv', index=False)"
|
| 116 |
-
]
|
| 117 |
-
}
|
| 118 |
-
],
|
| 119 |
-
"metadata": {
|
| 120 |
-
"kernelspec": {
|
| 121 |
-
"display_name": "base",
|
| 122 |
-
"language": "python",
|
| 123 |
-
"name": "python3"
|
| 124 |
-
},
|
| 125 |
-
"language_info": {
|
| 126 |
-
"name": "python",
|
| 127 |
-
"version": "3.11.0"
|
| 128 |
-
}
|
| 129 |
-
},
|
| 130 |
-
"nbformat": 4,
|
| 131 |
-
"nbformat_minor": 2
|
| 132 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|