Spaces:
Build error
Build error
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import TYPE_CHECKING, Dict, Optional, Sequence, Set, Tuple, Union | |
| import torch | |
| from peft import PeftModel | |
| from transformers import AutoModelForCausalLM | |
| from trl import AutoModelForCausalLMWithValueHead | |
| from ..data import get_dataset | |
| from ..extras.misc import get_current_device | |
| from ..hparams import get_infer_args, get_train_args | |
| from ..model import load_model, load_tokenizer | |
| if TYPE_CHECKING: | |
| from datasets import Dataset | |
| from peft import LoraModel | |
| from transformers import PreTrainedModel | |
| def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []) -> None: | |
| state_dict_a = model_a.state_dict() | |
| state_dict_b = model_b.state_dict() | |
| assert set(state_dict_a.keys()) == set(state_dict_b.keys()) | |
| for name in state_dict_a.keys(): | |
| if any(key in name for key in diff_keys): | |
| assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) is False | |
| else: | |
| assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) is True | |
| def check_lora_model(model: "LoraModel") -> Tuple[Set[str], Set[str]]: | |
| linear_modules, extra_modules = set(), set() | |
| for name, param in model.named_parameters(): | |
| if any(module in name for module in ["lora_A", "lora_B"]): | |
| linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1]) | |
| assert param.requires_grad is True | |
| assert param.dtype == torch.float32 | |
| elif "modules_to_save" in name: | |
| extra_modules.add(name.split(".modules_to_save", maxsplit=1)[0].split(".")[-1]) | |
| assert param.requires_grad is True | |
| assert param.dtype == torch.float32 | |
| else: | |
| assert param.requires_grad is False | |
| assert param.dtype == torch.float16 | |
| return linear_modules, extra_modules | |
| def load_train_model(add_valuehead: bool = False, **kwargs) -> "PreTrainedModel": | |
| model_args, _, _, finetuning_args, _ = get_train_args(kwargs) | |
| tokenizer = load_tokenizer(model_args)["tokenizer"] | |
| return load_model(tokenizer, model_args, finetuning_args, is_trainable=True, add_valuehead=add_valuehead) | |
| def load_infer_model(add_valuehead: bool = False, **kwargs) -> "PreTrainedModel": | |
| model_args, _, finetuning_args, _ = get_infer_args(kwargs) | |
| tokenizer = load_tokenizer(model_args)["tokenizer"] | |
| return load_model(tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead) | |
| def load_reference_model( | |
| model_path: str, | |
| lora_path: Optional[str] = None, | |
| use_lora: bool = False, | |
| use_pissa: bool = False, | |
| is_trainable: bool = False, | |
| add_valuehead: bool = False, | |
| ) -> Union["PreTrainedModel", "LoraModel"]: | |
| if add_valuehead: | |
| model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained( | |
| model_path, torch_dtype=torch.float16, device_map=get_current_device() | |
| ) | |
| if not is_trainable: | |
| model.v_head = model.v_head.to(torch.float16) | |
| return model | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_path, torch_dtype=torch.float16, device_map=get_current_device() | |
| ) | |
| if use_lora or use_pissa: | |
| model = PeftModel.from_pretrained( | |
| model, lora_path, subfolder="pissa_init" if use_pissa else None, is_trainable=is_trainable | |
| ) | |
| for param in filter(lambda p: p.requires_grad, model.parameters()): | |
| param.data = param.data.to(torch.float32) | |
| return model | |
| def load_train_dataset(**kwargs) -> "Dataset": | |
| model_args, data_args, training_args, _, _ = get_train_args(kwargs) | |
| tokenizer_module = load_tokenizer(model_args) | |
| dataset_module = get_dataset(model_args, data_args, training_args, stage=kwargs["stage"], **tokenizer_module) | |
| return dataset_module["train_dataset"] | |
| def patch_valuehead_model(): | |
| def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]) -> None: | |
| state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")} | |
| self.v_head.load_state_dict(state_dict, strict=False) | |
| del state_dict | |
| AutoModelForCausalLMWithValueHead.post_init = post_init | |