Spaces:
Build error
Build error
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from collections import defaultdict | |
| from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple | |
| from ...extras.constants import IGNORE_INDEX | |
| from ...extras.logging import get_logger | |
| from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, greedy_knapsack, infer_seqlen | |
| if TYPE_CHECKING: | |
| from transformers import PreTrainedTokenizer, ProcessorMixin | |
| from ...hparams import DataArguments | |
| from ..template import Template | |
| logger = get_logger(__name__) | |
| def _encode_supervised_example( | |
| prompt: Sequence[Dict[str, str]], | |
| response: Sequence[Dict[str, str]], | |
| system: Optional[str], | |
| tools: Optional[str], | |
| template: "Template", | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: Optional["ProcessorMixin"], | |
| data_args: "DataArguments", | |
| ) -> Tuple[List[int], List[int]]: | |
| if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models | |
| prompt[0]["content"] = template.image_token + prompt[0]["content"] | |
| messages = prompt + response | |
| input_ids, labels = [], [] | |
| if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models | |
| image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) | |
| input_ids += [image_token_id] * getattr(processor, "image_seq_length") | |
| labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length") | |
| encoded_pairs = template.encode_multiturn(tokenizer, messages, system, tools) | |
| total_length = 1 if template.efficient_eos else 0 | |
| for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs): | |
| if total_length >= data_args.cutoff_len: | |
| break | |
| source_len, target_len = infer_seqlen(len(source_ids), len(target_ids), data_args.cutoff_len - total_length) | |
| source_ids = source_ids[:source_len] | |
| target_ids = target_ids[:target_len] | |
| total_length += source_len + target_len | |
| if data_args.train_on_prompt: | |
| source_label = source_ids | |
| elif turn_idx != 0 and template.efficient_eos: | |
| source_label = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (source_len - 1) | |
| else: | |
| source_label = [IGNORE_INDEX] * source_len | |
| if data_args.mask_history and turn_idx != len(encoded_pairs) - 1: | |
| target_label = [IGNORE_INDEX] * target_len | |
| else: | |
| target_label = target_ids | |
| input_ids += source_ids + target_ids | |
| labels += source_label + target_label | |
| if template.efficient_eos: | |
| input_ids += [tokenizer.eos_token_id] | |
| labels += [tokenizer.eos_token_id] | |
| return input_ids, labels | |
| def preprocess_supervised_dataset( | |
| examples: Dict[str, List[Any]], | |
| template: "Template", | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: Optional["ProcessorMixin"], | |
| data_args: "DataArguments", | |
| ) -> Dict[str, List[List[int]]]: | |
| # build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>` | |
| # for multiturn examples, we only mask the prompt part in each prompt-response pair. | |
| model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} | |
| if processor is not None: | |
| model_inputs["pixel_values"] = [] | |
| if hasattr(processor, "image_seq_length"): # paligemma models | |
| model_inputs["token_type_ids"] = [] | |
| for i in range(len(examples["prompt"])): | |
| if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: | |
| logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) | |
| continue | |
| input_ids, labels = _encode_supervised_example( | |
| prompt=examples["prompt"][i], | |
| response=examples["response"][i], | |
| system=examples["system"][i], | |
| tools=examples["tools"][i], | |
| template=template, | |
| tokenizer=tokenizer, | |
| processor=processor, | |
| data_args=data_args, | |
| ) | |
| model_inputs["input_ids"].append(input_ids) | |
| model_inputs["attention_mask"].append([1] * len(input_ids)) | |
| model_inputs["labels"].append(labels) | |
| if processor is not None: | |
| model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) | |
| if hasattr(processor, "image_seq_length"): # paligemma models | |
| model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) | |
| return model_inputs | |
| def preprocess_packed_supervised_dataset( | |
| examples: Dict[str, List[Any]], | |
| template: "Template", | |
| tokenizer: "PreTrainedTokenizer", | |
| data_args: "DataArguments", | |
| ) -> Dict[str, List[List[int]]]: | |
| # build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>` | |
| # and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>` | |
| valid_num = 0 | |
| batch_input_ids, batch_labels = [], [] | |
| lengths = [] | |
| length2indexes = defaultdict(list) | |
| for i in range(len(examples["prompt"])): | |
| if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: | |
| logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) | |
| continue | |
| input_ids, labels = _encode_supervised_example( | |
| prompt=examples["prompt"][i], | |
| response=examples["response"][i], | |
| system=examples["system"][i], | |
| tools=examples["tools"][i], | |
| template=template, | |
| tokenizer=tokenizer, | |
| processor=None, | |
| data_args=data_args, | |
| ) | |
| length = len(input_ids) | |
| if length > data_args.cutoff_len: | |
| logger.warning("Dropped lengthy example with length {} > {}.".format(length, data_args.cutoff_len)) | |
| else: | |
| lengths.append(length) | |
| length2indexes[length].append(valid_num) | |
| batch_input_ids.append(input_ids) | |
| batch_labels.append(labels) | |
| valid_num += 1 | |
| model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} | |
| knapsacks = greedy_knapsack(lengths, data_args.cutoff_len) | |
| for knapsack in knapsacks: | |
| packed_input_ids, packed_attention_masks, packed_labels = [], [], [] | |
| for i, length in enumerate(knapsack): | |
| index = length2indexes[length].pop() | |
| packed_input_ids += batch_input_ids[index] | |
| packed_labels += batch_labels[index] | |
| if data_args.neat_packing: | |
| packed_attention_masks += [i + 1] * len(batch_input_ids[index]) # start from 1 | |
| else: | |
| packed_attention_masks += [1] * len(batch_input_ids[index]) | |
| if len(packed_input_ids) < data_args.cutoff_len: | |
| pad_length = data_args.cutoff_len - len(packed_input_ids) | |
| packed_input_ids += [tokenizer.pad_token_id] * pad_length | |
| packed_labels += [IGNORE_INDEX] * pad_length | |
| if data_args.neat_packing: | |
| packed_attention_masks += [0] * pad_length | |
| else: | |
| packed_attention_masks += [1] * pad_length # more efficient flash_attn | |
| if len(packed_input_ids) != data_args.cutoff_len: | |
| raise ValueError("The length of packed example should be identical to the cutoff length.") | |
| model_inputs["input_ids"].append(packed_input_ids) | |
| model_inputs["attention_mask"].append(packed_attention_masks) | |
| model_inputs["labels"].append(packed_labels) | |
| return model_inputs | |
| def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: | |
| valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"])) | |
| print("input_ids:\n{}".format(example["input_ids"])) | |
| print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) | |
| print("label_ids:\n{}".format(example["labels"])) | |
| print("labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False))) | |