Spaces:
Runtime error
Runtime error
| import os | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| import streamlit as st | |
| import torch | |
| from docquery.pipeline import get_pipeline | |
| from docquery.document import load_bytes | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipeline = get_pipeline(device=device) | |
| def process_document(file, question): | |
| # prepare encoder inputs | |
| document = load_document(file.name) | |
| return pipeline(question=question, **document.context) | |
| def ensure_list(x): | |
| if isinstance(x, list): | |
| return x | |
| else: | |
| return [x] | |
| st.title("DocQuery: Query Documents Using NLP") | |
| file = st.file_uploader("Upload a PDF or Image document") | |
| question = st.text_input("QUESTION", "") | |
| document = None | |
| if file is not None: | |
| col1, col2 = st.columns(2) | |
| document = load_bytes(file, file.name) | |
| col1.image(document.preview, use_column_width=True) | |
| if document is not None and question is not None and len(question) > 0: | |
| predictions = pipeline(question=question, **document.context) | |
| col2.header("Probabilities") | |
| for p in ensure_list(predictions): | |
| col2.subheader(f"{ p['answer'] }: { round(p['score'] * 100, 1)}%") | |
| "DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question answering dataset, as well as SQuAD, which boosts its English-language comprehension. To use it, simply upload an image or PDF, type a question, and click 'submit', or click one of the examples to load them." | |
| "[Github Repo](https://github.com/impira/docquery)" | |