Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,33 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import fitz # PyMuPDF
|
| 4 |
-
import tika
|
| 5 |
import torch
|
|
|
|
| 6 |
from fastapi import FastAPI
|
| 7 |
from transformers import pipeline
|
| 8 |
from PIL import Image
|
| 9 |
-
from io import BytesIO
|
| 10 |
from starlette.responses import RedirectResponse
|
| 11 |
-
from tika import parser
|
| 12 |
from openpyxl import load_workbook
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
tika.initVM()
|
| 16 |
|
| 17 |
# Initialize FastAPI
|
| 18 |
app = FastAPI()
|
| 19 |
|
| 20 |
-
#
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
|
|
|
| 26 |
|
| 27 |
-
# β
|
| 28 |
def validate_file_type(file):
|
| 29 |
if hasattr(file, "name"):
|
| 30 |
ext = file.name.split(".")[-1].lower()
|
|
@@ -34,33 +37,38 @@ def validate_file_type(file):
|
|
| 34 |
return "β Invalid file format!"
|
| 35 |
|
| 36 |
# β
Extract Text from PDF
|
| 37 |
-
def extract_text_from_pdf(file):
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
# β
Extract Text from
|
| 42 |
-
def
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
# β
Extract Text from Excel
|
| 46 |
-
def extract_text_from_excel(file):
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
return
|
| 53 |
-
|
| 54 |
-
# β
Truncate Long Text for Model
|
| 55 |
-
def truncate_text(text, max_length=2048):
|
| 56 |
-
return text[:max_length] if len(text) > max_length else text
|
| 57 |
|
| 58 |
# β
Answer Questions from Image or Document
|
| 59 |
-
def answer_question(file, question: str):
|
| 60 |
if isinstance(file, np.ndarray): # Image Processing
|
| 61 |
image = Image.fromarray(file)
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
| 64 |
return response[0]["generated_text"]
|
| 65 |
|
| 66 |
validation_error = validate_file_type(file)
|
|
@@ -69,13 +77,15 @@ def answer_question(file, question: str):
|
|
| 69 |
|
| 70 |
file_ext = file.name.split(".")[-1].lower()
|
| 71 |
|
| 72 |
-
# Extract
|
| 73 |
if file_ext == "pdf":
|
| 74 |
-
text = extract_text_from_pdf(file)
|
| 75 |
-
elif file_ext
|
| 76 |
-
text =
|
|
|
|
|
|
|
| 77 |
elif file_ext == "xlsx":
|
| 78 |
-
text = extract_text_from_excel(file)
|
| 79 |
else:
|
| 80 |
return "β Unsupported file format!"
|
| 81 |
|
|
@@ -83,7 +93,11 @@ def answer_question(file, question: str):
|
|
| 83 |
return "β οΈ No text extracted from the document."
|
| 84 |
|
| 85 |
truncated_text = truncate_text(text)
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
return response[0]["generated_text"]
|
| 89 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import fitz # PyMuPDF
|
|
|
|
| 4 |
import torch
|
| 5 |
+
import asyncio
|
| 6 |
from fastapi import FastAPI
|
| 7 |
from transformers import pipeline
|
| 8 |
from PIL import Image
|
|
|
|
| 9 |
from starlette.responses import RedirectResponse
|
|
|
|
| 10 |
from openpyxl import load_workbook
|
| 11 |
+
from docx import Document
|
| 12 |
+
from pptx import Presentation
|
|
|
|
| 13 |
|
| 14 |
# Initialize FastAPI
|
| 15 |
app = FastAPI()
|
| 16 |
|
| 17 |
+
# Use GPU if available
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
|
| 20 |
+
# Function to load models lazily
|
| 21 |
+
def get_qa_pipeline():
|
| 22 |
+
return pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=device, torch_dtype=torch.float16)
|
| 23 |
+
|
| 24 |
+
def get_image_captioning_pipeline():
|
| 25 |
+
return pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
| 26 |
|
| 27 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
| 28 |
+
MAX_INPUT_LENGTH = 1024 # Limit input length for faster processing
|
| 29 |
|
| 30 |
+
# β
Validate File Type
|
| 31 |
def validate_file_type(file):
|
| 32 |
if hasattr(file, "name"):
|
| 33 |
ext = file.name.split(".")[-1].lower()
|
|
|
|
| 37 |
return "β Invalid file format!"
|
| 38 |
|
| 39 |
# β
Extract Text from PDF
|
| 40 |
+
async def extract_text_from_pdf(file):
|
| 41 |
+
loop = asyncio.get_event_loop()
|
| 42 |
+
return await loop.run_in_executor(None, lambda: "\n".join([page.get_text() for page in fitz.open(file.name)]))
|
| 43 |
+
|
| 44 |
+
# β
Extract Text from DOCX
|
| 45 |
+
async def extract_text_from_docx(file):
|
| 46 |
+
loop = asyncio.get_event_loop()
|
| 47 |
+
return await loop.run_in_executor(None, lambda: "\n".join([p.text for p in Document(file).paragraphs]))
|
| 48 |
|
| 49 |
+
# β
Extract Text from PPTX
|
| 50 |
+
async def extract_text_from_pptx(file):
|
| 51 |
+
loop = asyncio.get_event_loop()
|
| 52 |
+
return await loop.run_in_executor(None, lambda: "\n".join([shape.text for slide in Presentation(file).slides for shape in slide.shapes if hasattr(shape, "text")]))
|
| 53 |
|
| 54 |
# β
Extract Text from Excel
|
| 55 |
+
async def extract_text_from_excel(file):
|
| 56 |
+
loop = asyncio.get_event_loop()
|
| 57 |
+
return await loop.run_in_executor(None, lambda: "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in load_workbook(file.name, data_only=True).worksheets for row in sheet.iter_rows(values_only=True)]))
|
| 58 |
+
|
| 59 |
+
# β
Truncate Long Text
|
| 60 |
+
def truncate_text(text):
|
| 61 |
+
return text[:MAX_INPUT_LENGTH] if len(text) > MAX_INPUT_LENGTH else text
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# β
Answer Questions from Image or Document
|
| 64 |
+
async def answer_question(file, question: str):
|
| 65 |
if isinstance(file, np.ndarray): # Image Processing
|
| 66 |
image = Image.fromarray(file)
|
| 67 |
+
image_captioning = get_image_captioning_pipeline()
|
| 68 |
+
caption = image_captioning(image)[0]['generated_text']
|
| 69 |
+
|
| 70 |
+
qa = get_qa_pipeline()
|
| 71 |
+
response = qa(f"Question: {question}\nContext: {caption}")
|
| 72 |
return response[0]["generated_text"]
|
| 73 |
|
| 74 |
validation_error = validate_file_type(file)
|
|
|
|
| 77 |
|
| 78 |
file_ext = file.name.split(".")[-1].lower()
|
| 79 |
|
| 80 |
+
# Extract text asynchronously
|
| 81 |
if file_ext == "pdf":
|
| 82 |
+
text = await extract_text_from_pdf(file)
|
| 83 |
+
elif file_ext == "docx":
|
| 84 |
+
text = await extract_text_from_docx(file)
|
| 85 |
+
elif file_ext == "pptx":
|
| 86 |
+
text = await extract_text_from_pptx(file)
|
| 87 |
elif file_ext == "xlsx":
|
| 88 |
+
text = await extract_text_from_excel(file)
|
| 89 |
else:
|
| 90 |
return "β Unsupported file format!"
|
| 91 |
|
|
|
|
| 93 |
return "β οΈ No text extracted from the document."
|
| 94 |
|
| 95 |
truncated_text = truncate_text(text)
|
| 96 |
+
|
| 97 |
+
# Run QA model asynchronously
|
| 98 |
+
loop = asyncio.get_event_loop()
|
| 99 |
+
qa = get_qa_pipeline()
|
| 100 |
+
response = await loop.run_in_executor(None, qa, f"Question: {question}\nContext: {truncated_text}")
|
| 101 |
|
| 102 |
return response[0]["generated_text"]
|
| 103 |
|