Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -132,138 +132,130 @@ def home():
|
|
| 132 |
return RedirectResponse(url="/")
|
| 133 |
"""
|
| 134 |
|
| 135 |
-
|
| 136 |
-
import pymupdf as fitz# PyMuPDF for PDF parsing
|
| 137 |
-
import openpyxl
|
| 138 |
-
from pptx import Presentation
|
| 139 |
-
import torch
|
| 140 |
-
from torchvision import transforms
|
| 141 |
-
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
| 142 |
-
from PIL import Image
|
| 143 |
-
from transformers import pipeline
|
| 144 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
from fastapi.responses import RedirectResponse
|
| 146 |
-
import
|
| 147 |
-
import
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
print("π FastAPI server is starting...")
|
| 151 |
-
app = FastAPI()
|
| 152 |
-
|
| 153 |
-
# Load AI Model for Question Answering (DeepSeek-V2-Chat)
|
| 154 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 155 |
-
|
| 156 |
-
# Preload Hugging Face model
|
| 157 |
-
print(f"π Loading models")
|
| 158 |
-
qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
|
| 159 |
-
|
| 160 |
-
# Load Pretrained Object Detection Model (Torchvision)
|
| 161 |
-
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
|
| 162 |
-
weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT
|
| 163 |
-
model = fasterrcnn_resnet50_fpn(weights=weights)
|
| 164 |
-
model.eval()
|
| 165 |
-
|
| 166 |
-
# Image Transformations
|
| 167 |
-
transform = transforms.Compose([
|
| 168 |
-
transforms.ToTensor()
|
| 169 |
-
])
|
| 170 |
|
| 171 |
-
#
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
print(f"π Validating file type: {ext}")
|
| 177 |
-
if ext not in ALLOWED_EXTENSIONS:
|
| 178 |
-
return f"β Unsupported file format: {ext}"
|
| 179 |
-
return None
|
| 180 |
-
|
| 181 |
-
# Function to truncate text to 450 tokens
|
| 182 |
-
def truncate_text(text, max_tokens=450):
|
| 183 |
-
words = text.split()
|
| 184 |
-
truncated = " ".join(words[:max_tokens])
|
| 185 |
-
print(f"βοΈ Truncated text to {max_tokens} tokens.")
|
| 186 |
-
return truncated
|
| 187 |
-
|
| 188 |
-
# Document Text Extraction Functions
|
| 189 |
-
def extract_text_from_pdf(pdf_file):
|
| 190 |
-
try:
|
| 191 |
-
print("π Extracting text from PDF...")
|
| 192 |
-
doc = fitz.open(pdf_file)
|
| 193 |
-
text = "\n".join([page.get_text("text") for page in doc])
|
| 194 |
-
print("β
PDF text extraction completed.")
|
| 195 |
-
return text if text else "β οΈ No text found."
|
| 196 |
-
except Exception as e:
|
| 197 |
-
return f"β Error reading PDF: {str(e)}"
|
| 198 |
|
| 199 |
-
def
|
|
|
|
| 200 |
try:
|
| 201 |
-
print("
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
-
def extract_text_from_pptx(pptx_file):
|
| 210 |
-
try:
|
| 211 |
-
print("π Extracting text from PPTX...")
|
| 212 |
-
ppt = Presentation(pptx_file)
|
| 213 |
-
text = []
|
| 214 |
-
for slide in ppt.slides:
|
| 215 |
-
for shape in slide.shapes:
|
| 216 |
-
if hasattr(shape, "text"):
|
| 217 |
-
text.append(shape.text)
|
| 218 |
-
print("β
PPTX text extraction completed.")
|
| 219 |
-
return "\n".join(text) if text else "β οΈ No text found."
|
| 220 |
except Exception as e:
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
text = extract_text_from_excel(file)
|
| 250 |
-
else:
|
| 251 |
-
return "β Unsupported file format!"
|
| 252 |
-
if not text:
|
| 253 |
-
return "β οΈ No text extracted from the document."
|
| 254 |
-
truncated_text = truncate_text(text)
|
| 255 |
-
print("π€ Generating response...")
|
| 256 |
-
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
|
| 257 |
-
print("β
AI response generated.")
|
| 258 |
-
return response[0]["generated_text"]
|
| 259 |
-
|
| 260 |
-
print("β
Models loaded successfully.")
|
| 261 |
-
|
| 262 |
-
doc_interface = gr.Interface(fn=answer_question_from_document, inputs=[gr.File(), gr.Textbox()], outputs="text")
|
| 263 |
-
|
| 264 |
-
demo = gr.TabbedInterface([doc_interface], ["Document QA"])
|
| 265 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
| 266 |
|
| 267 |
@app.get("/")
|
| 268 |
def home():
|
|
|
|
| 269 |
return RedirectResponse(url="/")
|
|
|
|
|
|
| 132 |
return RedirectResponse(url="/")
|
| 133 |
"""
|
| 134 |
|
| 135 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
import gradio as gr
|
| 137 |
+
import pandas as pd
|
| 138 |
+
import matplotlib.pyplot as plt
|
| 139 |
+
import seaborn as sns
|
| 140 |
+
from fastapi import FastAPI
|
| 141 |
+
from transformers import pipeline
|
| 142 |
from fastapi.responses import RedirectResponse
|
| 143 |
+
import io
|
| 144 |
+
import ast
|
| 145 |
+
from PIL import Image
|
| 146 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
+
# β
Load AI models
|
| 149 |
+
print("π Initializing application...")
|
| 150 |
+
table_analyzer = pipeline("table-question-answering", model="facebook/tapas-large-finetuned-wtq", device=-1)
|
| 151 |
+
code_generator = pipeline("text-generation", model="distilgpt2", device=-1)
|
| 152 |
+
print("β
AI models loaded successfully!")
|
| 153 |
|
| 154 |
+
# β
Initialize FastAPI
|
| 155 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
+
def generate_visualization(excel_file, viz_type, user_request):
|
| 158 |
+
"""Generates Python visualization code and insights based on user requests and Excel data."""
|
| 159 |
try:
|
| 160 |
+
print("π Loading Excel file...")
|
| 161 |
+
df = pd.read_excel(excel_file)
|
| 162 |
+
print("β
File loaded successfully! Columns:", df.columns)
|
| 163 |
+
|
| 164 |
+
# Convert date columns
|
| 165 |
+
for col in df.select_dtypes(include=["object", "datetime64"]):
|
| 166 |
+
try:
|
| 167 |
+
df[col] = pd.to_datetime(df[col], errors='coerce').dt.strftime('%Y-%m-%d %H:%M:%S')
|
| 168 |
+
except Exception:
|
| 169 |
+
pass
|
| 170 |
+
|
| 171 |
+
df = df.fillna(0) # Fill NaN values
|
| 172 |
+
|
| 173 |
+
formatted_table = [{col: str(value) for col, value in row.items()} for row in df.to_dict(orient="records")]
|
| 174 |
+
print(f"π Formatted table: {formatted_table[:5]}")
|
| 175 |
+
print(f"π User request: {user_request}")
|
| 176 |
+
|
| 177 |
+
if not isinstance(user_request, str):
|
| 178 |
+
raise ValueError("User request must be a string")
|
| 179 |
+
|
| 180 |
+
print("π§ Sending data to TAPAS model for analysis...")
|
| 181 |
+
table_answer = table_analyzer({"table": formatted_table, "query": user_request})
|
| 182 |
+
print("β
Table analysis completed!")
|
| 183 |
+
|
| 184 |
+
# β
AI-generated code
|
| 185 |
+
prompt = f"""Generate clean and executable Python code to visualize the following dataset:
|
| 186 |
+
Columns: {list(df.columns)}
|
| 187 |
+
Visualization type: {viz_type}
|
| 188 |
+
User request: {user_request}
|
| 189 |
+
Use the provided DataFrame 'df' without reloading it.
|
| 190 |
+
Ensure 'plt.show()' is at the end.
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
print("π€ Sending request to AI code generator...")
|
| 194 |
+
generated_code = code_generator(prompt, max_length=200)[0]['generated_text']
|
| 195 |
+
print("π AI-generated code:")
|
| 196 |
+
print(generated_code)
|
| 197 |
+
|
| 198 |
+
# β
Validate generated code
|
| 199 |
+
valid_syntax = re.match(r".*plt\.show\(\).*", generated_code, re.DOTALL)
|
| 200 |
+
if not valid_syntax:
|
| 201 |
+
print("β οΈ AI code generation failed! Using fallback visualization...")
|
| 202 |
+
return generated_code, "Error: The AI did not generate a valid Matplotlib script."
|
| 203 |
+
|
| 204 |
+
try:
|
| 205 |
+
ast.parse(generated_code) # Syntax validation
|
| 206 |
+
except SyntaxError as e:
|
| 207 |
+
return generated_code, f"Syntax error: {e}"
|
| 208 |
+
|
| 209 |
+
# β
Execute AI-generated code
|
| 210 |
+
try:
|
| 211 |
+
print("β‘ Executing AI-generated code...")
|
| 212 |
+
exec_globals = {"plt": plt, "sns": sns, "pd": pd, "df": df.copy(), "io": io}
|
| 213 |
+
exec(generated_code, exec_globals)
|
| 214 |
+
|
| 215 |
+
fig = plt.gcf()
|
| 216 |
+
img_buf = io.BytesIO()
|
| 217 |
+
fig.savefig(img_buf, format='png')
|
| 218 |
+
img_buf.seek(0)
|
| 219 |
+
plt.close(fig)
|
| 220 |
+
except Exception as e:
|
| 221 |
+
print(f"β Error executing AI-generated code: {str(e)}")
|
| 222 |
+
return generated_code, f"Error executing visualization: {str(e)}"
|
| 223 |
+
|
| 224 |
+
img = Image.open(img_buf)
|
| 225 |
+
return generated_code, img
|
| 226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
except Exception as e:
|
| 228 |
+
print(f"β An error occurred: {str(e)}")
|
| 229 |
+
return f"Error: {str(e)}", "Table analysis failed."
|
| 230 |
+
|
| 231 |
+
# β
Gradio UI setup
|
| 232 |
+
print("π οΈ Setting up Gradio interface...")
|
| 233 |
+
gradio_ui = gr.Interface(
|
| 234 |
+
fn=generate_visualization,
|
| 235 |
+
inputs=[
|
| 236 |
+
gr.File(label="Upload Excel File"),
|
| 237 |
+
gr.Radio([
|
| 238 |
+
"Bar Chart", "Line Chart", "Scatter Plot", "Histogram",
|
| 239 |
+
"Boxplot", "Heatmap", "Pie Chart", "Area Chart", "Bubble Chart", "Violin Plot"
|
| 240 |
+
], label="Select Visualization Type"),
|
| 241 |
+
gr.Textbox(label="Enter visualization request (e.g., 'Sales trend over time')")
|
| 242 |
+
],
|
| 243 |
+
outputs=[
|
| 244 |
+
gr.Code(label="Generated Python Code"),
|
| 245 |
+
gr.Image(label="Visualization Result")
|
| 246 |
+
],
|
| 247 |
+
title="AI-Powered Data Visualization π",
|
| 248 |
+
description="Upload an Excel file, choose your visualization type, and ask a question about your data!"
|
| 249 |
+
)
|
| 250 |
+
print("β
Gradio interface configured successfully!")
|
| 251 |
+
|
| 252 |
+
# β
Mount Gradio app
|
| 253 |
+
print("π Mounting Gradio interface on FastAPI...")
|
| 254 |
+
app = gr.mount_gradio_app(app, gradio_ui, path="/")
|
| 255 |
+
print("β
Gradio interface mounted successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
@app.get("/")
|
| 258 |
def home():
|
| 259 |
+
print("π Redirecting to UI...")
|
| 260 |
return RedirectResponse(url="/")
|
| 261 |
+
|