import streamlit as st import numpy as np from keras.models import load_model from PIL import Image model = load_model('./model.hdf5') st.title('Fire Detection Image') uploaded_file = st.file_uploader("Choose an image: ", type="jpg") if uploaded_file is not None: img = Image.open(uploaded_file) img = img.resize((256, 256)) img_array = np.array(img) img_array = np.expand_dims(img_array, axis=0) if st.button('Predict'): prediction = model.predict(image_batch) predicted_class_index = np.argmax(prediction) class_labels = {0: 'COVID19', 1: 'NORMAL', 2: 'PNEUMONIA', 3: 'TURBERCULOSIS'} predicted_class_label = class_labels[predicted_class_index] st.write(predicted_class_label)