Spaces:
Build error
Build error
Commit
·
125e1ba
1
Parent(s):
1d153c2
really fucking annoyed
Browse files
app.py
CHANGED
|
@@ -8,11 +8,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
|
|
| 8 |
import tensorflow as tf
|
| 9 |
import tensorflow_hub as hub
|
| 10 |
import io
|
| 11 |
-
import os
|
| 12 |
-
import numpy as np
|
| 13 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 14 |
-
import tempfile
|
| 15 |
-
import shutil
|
| 16 |
import logging
|
| 17 |
|
| 18 |
# Configure logging
|
|
@@ -76,43 +73,64 @@ def save_dataframe_to_csv(df):
|
|
| 76 |
# Return the file path (no need to reopen the file with "rb" mode)
|
| 77 |
return temp_file_path
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
shutil.copyfileobj(image_file, temp_file)
|
| 82 |
-
|
| 83 |
-
image = Image.open(temp_file.name)
|
| 84 |
-
image = np.array(image)
|
| 85 |
logging.info('Starting process_images_and_statements')
|
| 86 |
|
| 87 |
-
# Generate the image
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
|
|
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
iface = gr.Interface(
|
| 105 |
fn=process_images_and_statements,
|
| 106 |
inputs=image_input,
|
| 107 |
-
outputs=outputs
|
| 108 |
-
title="Image Captioning and Matching",
|
| 109 |
-
|
| 110 |
-
|
| 111 |
)
|
| 112 |
|
| 113 |
-
|
| 114 |
-
iface.launch(debug=True)
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
# Launch Gradio app
|
| 118 |
-
iface.launch(debug=True)
|
|
|
|
| 8 |
import tensorflow as tf
|
| 9 |
import tensorflow_hub as hub
|
| 10 |
import io
|
|
|
|
|
|
|
| 11 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 12 |
+
import tempfile # Add this import
|
|
|
|
| 13 |
import logging
|
| 14 |
|
| 15 |
# Configure logging
|
|
|
|
| 73 |
# Return the file path (no need to reopen the file with "rb" mode)
|
| 74 |
return temp_file_path
|
| 75 |
|
| 76 |
+
# Main function to perform image captioning and image-text matching
|
| 77 |
+
def process_images_and_statements(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
logging.info('Starting process_images_and_statements')
|
| 79 |
|
| 80 |
+
# Generate image caption for the uploaded image using git-large-r-textcaps
|
| 81 |
+
caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
|
| 82 |
+
|
| 83 |
+
# Define weights for combining textual similarity score and image-statement ITM score (adjust as needed)
|
| 84 |
+
weight_textual_similarity = 0.5
|
| 85 |
+
weight_statement = 0.5
|
| 86 |
+
|
| 87 |
+
# Initialize an empty list to store the results
|
| 88 |
+
results_list = []
|
| 89 |
+
|
| 90 |
+
# Loop through each predefined statement
|
| 91 |
+
for statement in statements:
|
| 92 |
+
# Compute textual similarity between caption and statement
|
| 93 |
+
textual_similarity_score = (compute_textual_similarity(caption, statement) * 100) # Multiply by 100
|
| 94 |
+
|
| 95 |
+
# Compute ITM score for the image-statement pair
|
| 96 |
+
itm_score_statement = (compute_itm_score(image, statement) * 100) # Multiply by 100
|
| 97 |
|
| 98 |
+
# Combine the two scores using a weighted average
|
| 99 |
+
final_score = ((weight_textual_similarity * textual_similarity_score) +
|
| 100 |
+
(weight_statement * itm_score_statement))
|
| 101 |
|
| 102 |
+
# Append the result to the results_list
|
| 103 |
+
results_list.append({
|
| 104 |
+
'Statement': statement,
|
| 105 |
+
'Generated Caption': caption, # Include the generated caption
|
| 106 |
+
'Textual Similarity Score': f"{textual_similarity_score:.2f}%", # Format as percentage with two decimal places
|
| 107 |
+
'ITM Score': f"{itm_score_statement:.2f}%", # Format as percentage with two decimal places
|
| 108 |
+
'Final Combined Score': f"{final_score:.2f}%" # Format as percentage with two decimal places
|
| 109 |
+
})
|
| 110 |
|
| 111 |
+
# Convert the results_list to a DataFrame using pandas.concat
|
| 112 |
+
results_df = pd.concat([pd.DataFrame([result]) for result in results_list], ignore_index=True)
|
| 113 |
|
| 114 |
+
logging.info('Finished process_images_and_statements')
|
| 115 |
+
|
| 116 |
+
# Save results_df to a CSV file
|
| 117 |
+
csv_results = save_dataframe_to_csv(results_df)
|
| 118 |
+
|
| 119 |
+
# Return both the DataFrame and the CSV data for the Gradio interface
|
| 120 |
+
return results_df, csv_results # <--- Return results_df and csv_results
|
| 121 |
+
|
| 122 |
+
# Gradio interface
|
| 123 |
+
image_input = gr.inputs.Image()
|
| 124 |
+
output_df = gr.outputs.Dataframe(type="pandas", label="Results")
|
| 125 |
+
output_csv = gr.outputs.File(label="Download CSV")
|
| 126 |
|
| 127 |
iface = gr.Interface(
|
| 128 |
fn=process_images_and_statements,
|
| 129 |
inputs=image_input,
|
| 130 |
+
outputs=[output_df, output_csv], # Include both the DataFrame and CSV file outputs
|
| 131 |
+
title="Image Captioning and Image-Text Matching",
|
| 132 |
+
theme='sudeepshouche/minimalist',
|
| 133 |
+
css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
|
| 134 |
)
|
| 135 |
|
| 136 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|