Spaces:
Sleeping
Sleeping
| # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
| import subprocess | |
| import pytest | |
| from PIL import Image | |
| from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE | |
| from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS | |
| from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks | |
| from ultralytics.utils.torch_utils import TORCH_1_9 | |
| # Constants | |
| TASK_MODEL_DATA = [(task, WEIGHTS_DIR / TASK2MODEL[task], TASK2DATA[task]) for task in TASKS] | |
| MODELS = [WEIGHTS_DIR / TASK2MODEL[task] for task in TASKS] | |
| def run(cmd): | |
| """Execute a shell command using subprocess.""" | |
| subprocess.run(cmd.split(), check=True) | |
| def test_special_modes(): | |
| """Test various special command-line modes for YOLO functionality.""" | |
| run("yolo help") | |
| run("yolo checks") | |
| run("yolo version") | |
| run("yolo settings reset") | |
| run("yolo cfg") | |
| def test_train(task, model, data): | |
| """Test YOLO training for different tasks, models, and datasets.""" | |
| run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 cache=disk") | |
| def test_val(task, model, data): | |
| """Test YOLO validation process for specified task, model, and data using a shell command.""" | |
| run(f"yolo val {task} model={model} data={data} imgsz=32 save_txt save_json") | |
| def test_predict(task, model, data): | |
| """Test YOLO prediction on provided sample assets for specified task and model.""" | |
| run(f"yolo predict model={model} source={ASSETS} imgsz=32 save save_crop save_txt") | |
| def test_export(model): | |
| """Test exporting a YOLO model to TorchScript format.""" | |
| run(f"yolo export model={model} format=torchscript imgsz=32") | |
| def test_rtdetr(task="detect", model="yolov8n-rtdetr.yaml", data="coco8.yaml"): | |
| """Test the RTDETR functionality within Ultralytics for detection tasks using specified model and data.""" | |
| # Warning: must use imgsz=640 (note also add coma, spaces, fraction=0.25 args to test single-image training) | |
| run(f"yolo train {task} model={model} data={data} --imgsz= 160 epochs =1, cache = disk fraction=0.25") | |
| run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=160 save save_crop save_txt") | |
| if TORCH_1_9: | |
| weights = WEIGHTS_DIR / "rtdetr-l.pt" | |
| run(f"yolo predict {task} model={weights} source={ASSETS / 'bus.jpg'} imgsz=160 save save_crop save_txt") | |
| def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8-seg.yaml"): | |
| """Test FastSAM model for segmenting objects in images using various prompts within Ultralytics.""" | |
| source = ASSETS / "bus.jpg" | |
| run(f"yolo segment val {task} model={model} data={data} imgsz=32") | |
| run(f"yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt") | |
| from ultralytics import FastSAM | |
| from ultralytics.models.sam import Predictor | |
| # Create a FastSAM model | |
| sam_model = FastSAM(model) # or FastSAM-x.pt | |
| # Run inference on an image | |
| for s in (source, Image.open(source)): | |
| everything_results = sam_model(s, device="cpu", retina_masks=True, imgsz=320, conf=0.4, iou=0.9) | |
| # Remove small regions | |
| new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20) | |
| # Run inference with bboxes and points and texts prompt at the same time | |
| sam_model(source, bboxes=[439, 437, 524, 709], points=[[200, 200]], labels=[1], texts="a photo of a dog") | |
| def test_mobilesam(): | |
| """Test MobileSAM segmentation with point prompts using Ultralytics.""" | |
| from ultralytics import SAM | |
| # Load the model | |
| model = SAM(WEIGHTS_DIR / "mobile_sam.pt") | |
| # Source | |
| source = ASSETS / "zidane.jpg" | |
| # Predict a segment based on a 1D point prompt and 1D labels. | |
| model.predict(source, points=[900, 370], labels=[1]) | |
| # Predict a segment based on 3D points and 2D labels (multiple points per object). | |
| model.predict(source, points=[[[900, 370], [1000, 100]]], labels=[[1, 1]]) | |
| # Predict a segment based on a box prompt | |
| model.predict(source, bboxes=[439, 437, 524, 709], save=True) | |
| # Predict all | |
| # model(source) | |
| # Slow Tests ----------------------------------------------------------------------------------------------------------- | |
| def test_train_gpu(task, model, data): | |
| """Test YOLO training on GPU(s) for various tasks and models.""" | |
| run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 device=0") # single GPU | |
| run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 device=0,1") # multi GPU | |