Spaces:
Sleeping
Sleeping
| # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
| import argparse | |
| from typing import Tuple, Union | |
| import cv2 | |
| import numpy as np | |
| import tensorflow as tf | |
| import yaml | |
| from ultralytics.utils import ASSETS | |
| try: | |
| from tflite_runtime.interpreter import Interpreter | |
| except ImportError: | |
| import tensorflow as tf | |
| Interpreter = tf.lite.Interpreter | |
| class YOLOv8TFLite: | |
| """ | |
| YOLOv8TFLite. | |
| A class for performing object detection using the YOLOv8 model with TensorFlow Lite. | |
| Attributes: | |
| model (str): Path to the TensorFlow Lite model file. | |
| conf (float): Confidence threshold for filtering detections. | |
| iou (float): Intersection over Union threshold for non-maximum suppression. | |
| metadata (Optional[str]): Path to the metadata file, if any. | |
| Methods: | |
| detect(img_path: str) -> np.ndarray: | |
| Performs inference and returns the output image with drawn detections. | |
| """ | |
| def __init__(self, model: str, conf: float = 0.25, iou: float = 0.45, metadata: Union[str, None] = None): | |
| """ | |
| Initializes an instance of the YOLOv8TFLite class. | |
| Args: | |
| model (str): Path to the TFLite model. | |
| conf (float, optional): Confidence threshold for filtering detections. Defaults to 0.25. | |
| iou (float, optional): IoU (Intersection over Union) threshold for non-maximum suppression. Defaults to 0.45. | |
| metadata (Union[str, None], optional): Path to the metadata file or None if not used. Defaults to None. | |
| """ | |
| self.conf = conf | |
| self.iou = iou | |
| if metadata is None: | |
| self.classes = {i: i for i in range(1000)} | |
| else: | |
| with open(metadata) as f: | |
| self.classes = yaml.safe_load(f)["names"] | |
| np.random.seed(42) | |
| self.color_palette = np.random.uniform(128, 255, size=(len(self.classes), 3)) | |
| self.model = Interpreter(model_path=model) | |
| self.model.allocate_tensors() | |
| input_details = self.model.get_input_details()[0] | |
| self.in_width, self.in_height = input_details["shape"][1:3] | |
| self.in_index = input_details["index"] | |
| self.in_scale, self.in_zero_point = input_details["quantization"] | |
| self.int8 = input_details["dtype"] == np.int8 | |
| output_details = self.model.get_output_details()[0] | |
| self.out_index = output_details["index"] | |
| self.out_scale, self.out_zero_point = output_details["quantization"] | |
| def letterbox(self, img: np.ndarray, new_shape: Tuple = (640, 640)) -> Tuple[np.ndarray, Tuple[float, float]]: | |
| """Resizes and reshapes images while maintaining aspect ratio by adding padding, suitable for YOLO models.""" | |
| shape = img.shape[:2] # current shape [height, width] | |
| # Scale ratio (new / old) | |
| r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) | |
| # Compute padding | |
| new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) | |
| dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding | |
| if shape[::-1] != new_unpad: # resize | |
| img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) | |
| top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) | |
| left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) | |
| img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)) | |
| return img, (top / img.shape[0], left / img.shape[1]) | |
| def draw_detections(self, img: np.ndarray, box: np.ndarray, score: np.float32, class_id: int) -> None: | |
| """ | |
| Draws bounding boxes and labels on the input image based on the detected objects. | |
| Args: | |
| img (np.ndarray): The input image to draw detections on. | |
| box (np.ndarray): Detected bounding box in the format [x1, y1, width, height]. | |
| score (np.float32): Corresponding detection score. | |
| class_id (int): Class ID for the detected object. | |
| Returns: | |
| None | |
| """ | |
| x1, y1, w, h = box | |
| color = self.color_palette[class_id] | |
| cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) | |
| label = f"{self.classes[class_id]}: {score:.2f}" | |
| (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) | |
| label_x = x1 | |
| label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 | |
| cv2.rectangle( | |
| img, | |
| (int(label_x), int(label_y - label_height)), | |
| (int(label_x + label_width), int(label_y + label_height)), | |
| color, | |
| cv2.FILLED, | |
| ) | |
| cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) | |
| def preprocess(self, img: np.ndarray) -> Tuple[np.ndarray, Tuple[float, float]]: | |
| """ | |
| Preprocesses the input image before performing inference. | |
| Args: | |
| img (np.ndarray): The input image to be preprocessed. | |
| Returns: | |
| Tuple[np.ndarray, Tuple[float, float]]: A tuple containing: | |
| - The preprocessed image (np.ndarray). | |
| - A tuple of two float values representing the padding applied (top/bottom, left/right). | |
| """ | |
| img, pad = self.letterbox(img, (self.in_width, self.in_height)) | |
| img = img[..., ::-1][None] # N,H,W,C for TFLite | |
| img = np.ascontiguousarray(img) | |
| img = img.astype(np.float32) | |
| return img / 255, pad | |
| def postprocess(self, img: np.ndarray, outputs: np.ndarray, pad: Tuple[float, float]) -> np.ndarray: | |
| """ | |
| Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs. | |
| Args: | |
| img (numpy.ndarray): The input image. | |
| outputs (numpy.ndarray): The output of the model. | |
| pad (Tuple[float, float]): Padding used by letterbox. | |
| Returns: | |
| numpy.ndarray: The input image with detections drawn on it. | |
| """ | |
| outputs[:, 0] -= pad[1] | |
| outputs[:, 1] -= pad[0] | |
| outputs[:, :4] *= max(img.shape) | |
| outputs = outputs.transpose(0, 2, 1) | |
| outputs[..., 0] -= outputs[..., 2] / 2 | |
| outputs[..., 1] -= outputs[..., 3] / 2 | |
| for out in outputs: | |
| scores = out[:, 4:].max(-1) | |
| keep = scores > self.conf | |
| boxes = out[keep, :4] | |
| scores = scores[keep] | |
| class_ids = out[keep, 4:].argmax(-1) | |
| indices = cv2.dnn.NMSBoxes(boxes, scores, self.conf, self.iou).flatten() | |
| [self.draw_detections(img, boxes[i], scores[i], class_ids[i]) for i in indices] | |
| return img | |
| def detect(self, img_path: str) -> np.ndarray: | |
| """ | |
| Performs inference using a TFLite model and returns the output image with drawn detections. | |
| Args: | |
| img_path (str): The path to the input image file. | |
| Returns: | |
| np.ndarray: The output image with drawn detections. | |
| """ | |
| img = cv2.imread(img_path) | |
| x, pad = self.preprocess(img) | |
| if self.int8: | |
| x = (x / self.in_scale + self.in_zero_point).astype(np.int8) | |
| self.model.set_tensor(self.in_index, x) | |
| self.model.invoke() | |
| y = self.model.get_tensor(self.out_index) | |
| if self.int8: | |
| y = (y.astype(np.float32) - self.out_zero_point) * self.out_scale | |
| return self.postprocess(img, y, pad) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--model", | |
| type=str, | |
| default="yolov8n_saved_model/yolov8n_full_integer_quant.tflite", | |
| help="Path to TFLite model.", | |
| ) | |
| parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image") | |
| parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold") | |
| parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold") | |
| parser.add_argument("--metadata", type=str, default="yolov8n_saved_model/metadata.yaml", help="Metadata yaml") | |
| args = parser.parse_args() | |
| detector = YOLOv8TFLite(args.model, args.conf, args.iou, args.metadata) | |
| result = detector.detect(str(ASSETS / "bus.jpg")) | |
| cv2.imshow("Output", result) | |
| cv2.waitKey(0) | |