Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tokenization classes for Bert.""" | |
| import collections | |
| import os | |
| import unicodedata | |
| from typing import List, Optional, Tuple | |
| from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} | |
| PRETRAINED_VOCAB_FILES_MAP = { | |
| "vocab_file": { | |
| "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", | |
| "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", | |
| "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", | |
| "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", | |
| "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt", | |
| "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", | |
| "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", | |
| "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", | |
| "bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt", | |
| "bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt", | |
| "bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt", | |
| "bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt", | |
| "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt", | |
| "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", | |
| "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt", | |
| "TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt", | |
| "TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt", | |
| "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt", | |
| } | |
| } | |
| PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
| "bert-base-uncased": 512, | |
| "bert-large-uncased": 512, | |
| "bert-base-cased": 512, | |
| "bert-large-cased": 512, | |
| "bert-base-multilingual-uncased": 512, | |
| "bert-base-multilingual-cased": 512, | |
| "bert-base-chinese": 512, | |
| "bert-base-german-cased": 512, | |
| "bert-large-uncased-whole-word-masking": 512, | |
| "bert-large-cased-whole-word-masking": 512, | |
| "bert-large-uncased-whole-word-masking-finetuned-squad": 512, | |
| "bert-large-cased-whole-word-masking-finetuned-squad": 512, | |
| "bert-base-cased-finetuned-mrpc": 512, | |
| "bert-base-german-dbmdz-cased": 512, | |
| "bert-base-german-dbmdz-uncased": 512, | |
| "TurkuNLP/bert-base-finnish-cased-v1": 512, | |
| "TurkuNLP/bert-base-finnish-uncased-v1": 512, | |
| "wietsedv/bert-base-dutch-cased": 512, | |
| } | |
| PRETRAINED_INIT_CONFIGURATION = { | |
| "bert-base-uncased": {"do_lower_case": True}, | |
| "bert-large-uncased": {"do_lower_case": True}, | |
| "bert-base-cased": {"do_lower_case": False}, | |
| "bert-large-cased": {"do_lower_case": False}, | |
| "bert-base-multilingual-uncased": {"do_lower_case": True}, | |
| "bert-base-multilingual-cased": {"do_lower_case": False}, | |
| "bert-base-chinese": {"do_lower_case": False}, | |
| "bert-base-german-cased": {"do_lower_case": False}, | |
| "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, | |
| "bert-large-cased-whole-word-masking": {"do_lower_case": False}, | |
| "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, | |
| "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, | |
| "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, | |
| "bert-base-german-dbmdz-cased": {"do_lower_case": False}, | |
| "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, | |
| "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, | |
| "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, | |
| "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, | |
| } | |
| def load_vocab(vocab_file): | |
| """Loads a vocabulary file into a dictionary.""" | |
| vocab = collections.OrderedDict() | |
| with open(vocab_file, "r", encoding="utf-8") as reader: | |
| tokens = reader.readlines() | |
| for index, token in enumerate(tokens): | |
| token = token.rstrip("\n") | |
| vocab[token] = index | |
| return vocab | |
| def whitespace_tokenize(text): | |
| """Runs basic whitespace cleaning and splitting on a piece of text.""" | |
| text = text.strip() | |
| if not text: | |
| return [] | |
| tokens = text.split() | |
| return tokens | |
| class BertTokenizer(PreTrainedTokenizer): | |
| r""" | |
| Construct a BERT tokenizer. Based on WordPiece. | |
| This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. | |
| Users should refer to this superclass for more information regarding those methods. | |
| Args: | |
| vocab_file (:obj:`str`): | |
| File containing the vocabulary. | |
| do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
| Whether or not to lowercase the input when tokenizing. | |
| do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
| Whether or not to do basic tokenization before WordPiece. | |
| never_split (:obj:`Iterable`, `optional`): | |
| Collection of tokens which will never be split during tokenization. Only has an effect when | |
| :obj:`do_basic_tokenize=True` | |
| unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`): | |
| The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
| token instead. | |
| sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`): | |
| The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
| sequence classification or for a text and a question for question answering. It is also used as the last | |
| token of a sequence built with special tokens. | |
| pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`): | |
| The token used for padding, for example when batching sequences of different lengths. | |
| cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`): | |
| The classifier token which is used when doing sequence classification (classification of the whole sequence | |
| instead of per-token classification). It is the first token of the sequence when built with special tokens. | |
| mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`): | |
| The token used for masking values. This is the token used when training this model with masked language | |
| modeling. This is the token which the model will try to predict. | |
| tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
| Whether or not to tokenize Chinese characters. | |
| This should likely be deactivated for Japanese (see this `issue | |
| <https://github.com/huggingface/transformers/issues/328>`__). | |
| strip_accents: (:obj:`bool`, `optional`): | |
| Whether or not to strip all accents. If this option is not specified, then it will be determined by the | |
| value for :obj:`lowercase` (as in the original BERT). | |
| """ | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
| pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION | |
| max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
| def __init__( | |
| self, | |
| vocab_file, | |
| do_lower_case=True, | |
| do_basic_tokenize=True, | |
| never_split=None, | |
| unk_token="[UNK]", | |
| sep_token="[SEP]", | |
| pad_token="[PAD]", | |
| cls_token="[CLS]", | |
| mask_token="[MASK]", | |
| tokenize_chinese_chars=True, | |
| strip_accents=None, | |
| **kwargs | |
| ): | |
| super().__init__( | |
| do_lower_case=do_lower_case, | |
| do_basic_tokenize=do_basic_tokenize, | |
| never_split=never_split, | |
| unk_token=unk_token, | |
| sep_token=sep_token, | |
| pad_token=pad_token, | |
| cls_token=cls_token, | |
| mask_token=mask_token, | |
| tokenize_chinese_chars=tokenize_chinese_chars, | |
| strip_accents=strip_accents, | |
| **kwargs, | |
| ) | |
| if not os.path.isfile(vocab_file): | |
| raise ValueError( | |
| "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " | |
| "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format( | |
| vocab_file) | |
| ) | |
| self.vocab = load_vocab(vocab_file) | |
| self.ids_to_tokens = collections.OrderedDict( | |
| [(ids, tok) for tok, ids in self.vocab.items()]) | |
| self.do_basic_tokenize = do_basic_tokenize | |
| if do_basic_tokenize: | |
| self.basic_tokenizer = BasicTokenizer( | |
| do_lower_case=do_lower_case, | |
| never_split=never_split, | |
| tokenize_chinese_chars=tokenize_chinese_chars, | |
| strip_accents=strip_accents, | |
| ) | |
| self.wordpiece_tokenizer = WordpieceTokenizer( | |
| vocab=self.vocab, unk_token=self.unk_token) | |
| def do_lower_case(self): | |
| return self.basic_tokenizer.do_lower_case | |
| def vocab_size(self): | |
| return len(self.vocab) | |
| def get_vocab(self): | |
| return dict(self.vocab, **self.added_tokens_encoder) | |
| def _tokenize(self, text): | |
| split_tokens = [] | |
| if self.do_basic_tokenize: | |
| for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): | |
| # If the token is part of the never_split set | |
| if token in self.basic_tokenizer.never_split: | |
| split_tokens.append(token) | |
| else: | |
| split_tokens += self.wordpiece_tokenizer.tokenize(token) | |
| else: | |
| split_tokens = self.wordpiece_tokenizer.tokenize(text) | |
| return split_tokens | |
| def _convert_token_to_id(self, token): | |
| """ Converts a token (str) in an id using the vocab. """ | |
| return self.vocab.get(token, self.vocab.get(self.unk_token)) | |
| def _convert_id_to_token(self, index): | |
| """Converts an index (integer) in a token (str) using the vocab.""" | |
| return self.ids_to_tokens.get(index, self.unk_token) | |
| def convert_tokens_to_string(self, tokens): | |
| """ Converts a sequence of tokens (string) in a single string. """ | |
| out_string = " ".join(tokens).replace(" ##", "").strip() | |
| return out_string | |
| def build_inputs_with_special_tokens( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
| ) -> List[int]: | |
| """ | |
| Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
| adding special tokens. A BERT sequence has the following format: | |
| - single sequence: ``[CLS] X `` | |
| - pair of sequences: ``[CLS] A [SEP] B [SEP]`` | |
| Args: | |
| token_ids_0 (:obj:`List[int]`): | |
| List of IDs to which the special tokens will be added. | |
| token_ids_1 (:obj:`List[int]`, `optional`): | |
| Optional second list of IDs for sequence pairs. | |
| Returns: | |
| :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. | |
| """ | |
| if token_ids_1 is None: | |
| return [self.cls_token_id] + token_ids_0 | |
| cls = [self.cls_token_id] | |
| sep = [self.sep_token_id] | |
| return cls + token_ids_0 + sep + token_ids_1 + sep | |
| def get_special_tokens_mask( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
| ) -> List[int]: | |
| """ | |
| Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
| special tokens using the tokenizer ``prepare_for_model`` method. | |
| Args: | |
| token_ids_0 (:obj:`List[int]`): | |
| List of IDs. | |
| token_ids_1 (:obj:`List[int]`, `optional`): | |
| Optional second list of IDs for sequence pairs. | |
| already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not the token list is already formatted with special tokens for the model. | |
| Returns: | |
| :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
| """ | |
| if already_has_special_tokens: | |
| if token_ids_1 is not None: | |
| raise ValueError( | |
| "You should not supply a second sequence if the provided sequence of " | |
| "ids is already formatted with special tokens for the model." | |
| ) | |
| return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) | |
| if token_ids_1 is not None: | |
| return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] | |
| return [1] + ([0] * len(token_ids_0)) + [1] | |
| def create_token_type_ids_from_sequences( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
| ) -> List[int]: | |
| """ | |
| Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence | |
| pair mask has the following format: | |
| :: | |
| 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | |
| | first sequence | second sequence | | |
| If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s). | |
| Args: | |
| token_ids_0 (:obj:`List[int]`): | |
| List of IDs. | |
| token_ids_1 (:obj:`List[int]`, `optional`): | |
| Optional second list of IDs for sequence pairs. | |
| Returns: | |
| :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given | |
| sequence(s). | |
| """ | |
| sep = [self.sep_token_id] | |
| cls = [self.cls_token_id] | |
| if token_ids_1 is None: | |
| return len(cls + token_ids_0 + sep) * [0] | |
| return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] | |
| def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
| index = 0 | |
| if os.path.isdir(save_directory): | |
| vocab_file = os.path.join( | |
| save_directory, (filename_prefix + "-" if filename_prefix else "") + | |
| VOCAB_FILES_NAMES["vocab_file"] | |
| ) | |
| else: | |
| vocab_file = (filename_prefix + | |
| "-" if filename_prefix else "") + save_directory | |
| with open(vocab_file, "w", encoding="utf-8") as writer: | |
| for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): | |
| if index != token_index: | |
| logger.warning( | |
| "Saving vocabulary to {}: vocabulary indices are not consecutive." | |
| " Please check that the vocabulary is not corrupted!".format( | |
| vocab_file) | |
| ) | |
| index = token_index | |
| writer.write(token + "\n") | |
| index += 1 | |
| return (vocab_file,) | |
| class BasicTokenizer(object): | |
| """ | |
| Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). | |
| Args: | |
| do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
| Whether or not to lowercase the input when tokenizing. | |
| never_split (:obj:`Iterable`, `optional`): | |
| Collection of tokens which will never be split during tokenization. Only has an effect when | |
| :obj:`do_basic_tokenize=True` | |
| tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
| Whether or not to tokenize Chinese characters. | |
| This should likely be deactivated for Japanese (see this `issue | |
| <https://github.com/huggingface/transformers/issues/328>`__). | |
| strip_accents: (:obj:`bool`, `optional`): | |
| Whether or not to strip all accents. If this option is not specified, then it will be determined by the | |
| value for :obj:`lowercase` (as in the original BERT). | |
| """ | |
| def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None): | |
| if never_split is None: | |
| never_split = [] | |
| self.do_lower_case = do_lower_case | |
| self.never_split = set(never_split) | |
| self.tokenize_chinese_chars = tokenize_chinese_chars | |
| self.strip_accents = strip_accents | |
| def tokenize(self, text, never_split=None): | |
| """ | |
| Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see | |
| WordPieceTokenizer. | |
| Args: | |
| **never_split**: (`optional`) list of str | |
| Kept for backward compatibility purposes. Now implemented directly at the base class level (see | |
| :func:`PreTrainedTokenizer.tokenize`) List of token not to split. | |
| """ | |
| # union() returns a new set by concatenating the two sets. | |
| never_split = self.never_split.union( | |
| set(never_split)) if never_split else self.never_split | |
| text = self._clean_text(text) | |
| # This was added on November 1st, 2018 for the multilingual and Chinese | |
| # models. This is also applied to the English models now, but it doesn't | |
| # matter since the English models were not trained on any Chinese data | |
| # and generally don't have any Chinese data in them (there are Chinese | |
| # characters in the vocabulary because Wikipedia does have some Chinese | |
| # words in the English Wikipedia.). | |
| if self.tokenize_chinese_chars: | |
| text = self._tokenize_chinese_chars(text) | |
| orig_tokens = whitespace_tokenize(text) | |
| split_tokens = [] | |
| for token in orig_tokens: | |
| if token not in never_split: | |
| if self.do_lower_case: | |
| token = token.lower() | |
| if self.strip_accents is not False: | |
| token = self._run_strip_accents(token) | |
| elif self.strip_accents: | |
| token = self._run_strip_accents(token) | |
| split_tokens.extend(self._run_split_on_punc(token, never_split)) | |
| output_tokens = whitespace_tokenize(" ".join(split_tokens)) | |
| return output_tokens | |
| def _run_strip_accents(self, text): | |
| """Strips accents from a piece of text.""" | |
| text = unicodedata.normalize("NFD", text) | |
| output = [] | |
| for char in text: | |
| cat = unicodedata.category(char) | |
| if cat == "Mn": | |
| continue | |
| output.append(char) | |
| return "".join(output) | |
| def _run_split_on_punc(self, text, never_split=None): | |
| """Splits punctuation on a piece of text.""" | |
| if never_split is not None and text in never_split: | |
| return [text] | |
| chars = list(text) | |
| i = 0 | |
| start_new_word = True | |
| output = [] | |
| while i < len(chars): | |
| char = chars[i] | |
| if _is_punctuation(char): | |
| output.append([char]) | |
| start_new_word = True | |
| else: | |
| if start_new_word: | |
| output.append([]) | |
| start_new_word = False | |
| output[-1].append(char) | |
| i += 1 | |
| return ["".join(x) for x in output] | |
| def _tokenize_chinese_chars(self, text): | |
| """Adds whitespace around any CJK character.""" | |
| output = [] | |
| for char in text: | |
| cp = ord(char) | |
| if self._is_chinese_char(cp): | |
| output.append(" ") | |
| output.append(char) | |
| output.append(" ") | |
| else: | |
| output.append(char) | |
| return "".join(output) | |
| def _is_chinese_char(self, cp): | |
| """Checks whether CP is the codepoint of a CJK character.""" | |
| # This defines a "chinese character" as anything in the CJK Unicode block: | |
| # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) | |
| # | |
| # Note that the CJK Unicode block is NOT all Japanese and Korean characters, | |
| # despite its name. The modern Korean Hangul alphabet is a different block, | |
| # as is Japanese Hiragana and Katakana. Those alphabets are used to write | |
| # space-separated words, so they are not treated specially and handled | |
| # like the all of the other languages. | |
| if ( | |
| (cp >= 0x4E00 and cp <= 0x9FFF) | |
| or (cp >= 0x3400 and cp <= 0x4DBF) # | |
| or (cp >= 0x20000 and cp <= 0x2A6DF) # | |
| or (cp >= 0x2A700 and cp <= 0x2B73F) # | |
| or (cp >= 0x2B740 and cp <= 0x2B81F) # | |
| or (cp >= 0x2B820 and cp <= 0x2CEAF) # | |
| or (cp >= 0xF900 and cp <= 0xFAFF) | |
| or (cp >= 0x2F800 and cp <= 0x2FA1F) # | |
| ): # | |
| return True | |
| return False | |
| def _clean_text(self, text): | |
| """Performs invalid character removal and whitespace cleanup on text.""" | |
| output = [] | |
| for char in text: | |
| cp = ord(char) | |
| if cp == 0 or cp == 0xFFFD or _is_control(char): | |
| continue | |
| if _is_whitespace(char): | |
| output.append(" ") | |
| else: | |
| output.append(char) | |
| return "".join(output) | |
| class WordpieceTokenizer(object): | |
| """Runs WordPiece tokenization.""" | |
| def __init__(self, vocab, unk_token, max_input_chars_per_word=100): | |
| self.vocab = vocab | |
| self.unk_token = unk_token | |
| self.max_input_chars_per_word = max_input_chars_per_word | |
| def tokenize(self, text): | |
| """ | |
| Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform | |
| tokenization using the given vocabulary. | |
| For example, :obj:`input = "unaffable"` wil return as output :obj:`["un", "##aff", "##able"]`. | |
| Args: | |
| text: A single token or whitespace separated tokens. This should have | |
| already been passed through `BasicTokenizer`. | |
| Returns: | |
| A list of wordpiece tokens. | |
| """ | |
| output_tokens = [] | |
| for token in whitespace_tokenize(text): | |
| chars = list(token) | |
| if len(chars) > self.max_input_chars_per_word: | |
| output_tokens.append(self.unk_token) | |
| continue | |
| is_bad = False | |
| start = 0 | |
| sub_tokens = [] | |
| while start < len(chars): | |
| end = len(chars) | |
| cur_substr = None | |
| while start < end: | |
| substr = "".join(chars[start:end]) | |
| if start > 0: | |
| substr = "##" + substr | |
| if substr in self.vocab: | |
| cur_substr = substr | |
| break | |
| end -= 1 | |
| if cur_substr is None: | |
| is_bad = True | |
| break | |
| sub_tokens.append(cur_substr) | |
| start = end | |
| if is_bad: | |
| output_tokens.append(self.unk_token) | |
| else: | |
| output_tokens.extend(sub_tokens) | |
| return output_tokens | |