Spaces:
Running
on
Zero
Running
on
Zero
Migrate from yapf to black
Browse files
README.md
CHANGED
|
@@ -17,5 +17,3 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
|
|
| 17 |
Llama v2 was introduced in [this paper](https://arxiv.org/abs/2307.09288).
|
| 18 |
|
| 19 |
This Space demonstrates [Llama-2-7b-chat-hf](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/meta-llama/Llama-2-7b-chat-hf) from Meta. Please, check the original model card for details.
|
| 20 |
-
|
| 21 |
-
|
|
|
|
| 17 |
Llama v2 was introduced in [this paper](https://arxiv.org/abs/2307.09288).
|
| 18 |
|
| 19 |
This Space demonstrates [Llama-2-7b-chat-hf](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/meta-llama/Llama-2-7b-chat-hf) from Meta. Please, check the original model card for details.
|
|
|
|
|
|
app.py
CHANGED
|
@@ -33,26 +33,24 @@ this demo is governed by the original [license](https://huggingface.co/spaces/hu
|
|
| 33 |
"""
|
| 34 |
|
| 35 |
if not torch.cuda.is_available():
|
| 36 |
-
DESCRIPTION +=
|
| 37 |
|
| 38 |
|
| 39 |
def clear_and_save_textbox(message: str) -> tuple[str, str]:
|
| 40 |
-
return
|
| 41 |
|
| 42 |
|
| 43 |
-
def display_input(message: str,
|
| 44 |
-
|
| 45 |
-
history.append((message, ''))
|
| 46 |
return history
|
| 47 |
|
| 48 |
|
| 49 |
-
def delete_prev_fn(
|
| 50 |
-
history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
|
| 51 |
try:
|
| 52 |
message, _ = history.pop()
|
| 53 |
except IndexError:
|
| 54 |
-
message =
|
| 55 |
-
return history, message or
|
| 56 |
|
| 57 |
|
| 58 |
def generate(
|
|
@@ -73,7 +71,7 @@ def generate(
|
|
| 73 |
first_response = next(generator)
|
| 74 |
yield history + [(message, first_response)]
|
| 75 |
except StopIteration:
|
| 76 |
-
yield history + [(message,
|
| 77 |
for response in generator:
|
| 78 |
yield history + [(message, response)]
|
| 79 |
|
|
@@ -82,67 +80,63 @@ def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
|
|
| 82 |
generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
|
| 83 |
for x in generator:
|
| 84 |
pass
|
| 85 |
-
return
|
| 86 |
|
| 87 |
|
| 88 |
def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
|
| 89 |
input_token_length = get_input_token_length(message, chat_history, system_prompt)
|
| 90 |
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
|
| 91 |
-
raise gr.Error(
|
|
|
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
-
with gr.Blocks(css=
|
| 95 |
gr.Markdown(DESCRIPTION)
|
| 96 |
-
gr.DuplicateButton(value=
|
| 97 |
-
elem_id='duplicate-button')
|
| 98 |
|
| 99 |
with gr.Group():
|
| 100 |
-
chatbot = gr.Chatbot(label=
|
| 101 |
with gr.Row():
|
| 102 |
textbox = gr.Textbox(
|
| 103 |
container=False,
|
| 104 |
show_label=False,
|
| 105 |
-
placeholder=
|
| 106 |
scale=10,
|
| 107 |
)
|
| 108 |
-
submit_button = gr.Button(
|
| 109 |
-
variant='primary',
|
| 110 |
-
scale=1,
|
| 111 |
-
min_width=0)
|
| 112 |
with gr.Row():
|
| 113 |
-
retry_button = gr.Button(
|
| 114 |
-
undo_button = gr.Button(
|
| 115 |
-
clear_button = gr.Button(
|
| 116 |
|
| 117 |
saved_input = gr.State()
|
| 118 |
|
| 119 |
-
with gr.Accordion(label=
|
| 120 |
-
system_prompt = gr.Textbox(label=
|
| 121 |
-
value=DEFAULT_SYSTEM_PROMPT,
|
| 122 |
-
lines=6)
|
| 123 |
max_new_tokens = gr.Slider(
|
| 124 |
-
label=
|
| 125 |
minimum=1,
|
| 126 |
maximum=MAX_MAX_NEW_TOKENS,
|
| 127 |
step=1,
|
| 128 |
value=DEFAULT_MAX_NEW_TOKENS,
|
| 129 |
)
|
| 130 |
temperature = gr.Slider(
|
| 131 |
-
label=
|
| 132 |
minimum=0.1,
|
| 133 |
maximum=4.0,
|
| 134 |
step=0.1,
|
| 135 |
value=1.0,
|
| 136 |
)
|
| 137 |
top_p = gr.Slider(
|
| 138 |
-
label=
|
| 139 |
minimum=0.05,
|
| 140 |
maximum=1.0,
|
| 141 |
step=0.05,
|
| 142 |
value=0.95,
|
| 143 |
)
|
| 144 |
top_k = gr.Slider(
|
| 145 |
-
label=
|
| 146 |
minimum=1,
|
| 147 |
maximum=1000,
|
| 148 |
step=1,
|
|
@@ -151,10 +145,10 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 151 |
|
| 152 |
gr.Examples(
|
| 153 |
examples=[
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
"Write a 100-word article on 'Benefits of Open-Source in AI research'",
|
| 159 |
],
|
| 160 |
inputs=textbox,
|
|
@@ -197,36 +191,41 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 197 |
api_name=False,
|
| 198 |
)
|
| 199 |
|
| 200 |
-
button_event_preprocess =
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
)
|
| 231 |
|
| 232 |
retry_button.click(
|
|
@@ -271,7 +270,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 271 |
)
|
| 272 |
|
| 273 |
clear_button.click(
|
| 274 |
-
fn=lambda: ([],
|
| 275 |
outputs=[chatbot, saved_input],
|
| 276 |
queue=False,
|
| 277 |
api_name=False,
|
|
|
|
| 33 |
"""
|
| 34 |
|
| 35 |
if not torch.cuda.is_available():
|
| 36 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 37 |
|
| 38 |
|
| 39 |
def clear_and_save_textbox(message: str) -> tuple[str, str]:
|
| 40 |
+
return "", message
|
| 41 |
|
| 42 |
|
| 43 |
+
def display_input(message: str, history: list[tuple[str, str]]) -> list[tuple[str, str]]:
|
| 44 |
+
history.append((message, ""))
|
|
|
|
| 45 |
return history
|
| 46 |
|
| 47 |
|
| 48 |
+
def delete_prev_fn(history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
|
|
|
|
| 49 |
try:
|
| 50 |
message, _ = history.pop()
|
| 51 |
except IndexError:
|
| 52 |
+
message = ""
|
| 53 |
+
return history, message or ""
|
| 54 |
|
| 55 |
|
| 56 |
def generate(
|
|
|
|
| 71 |
first_response = next(generator)
|
| 72 |
yield history + [(message, first_response)]
|
| 73 |
except StopIteration:
|
| 74 |
+
yield history + [(message, "")]
|
| 75 |
for response in generator:
|
| 76 |
yield history + [(message, response)]
|
| 77 |
|
|
|
|
| 80 |
generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
|
| 81 |
for x in generator:
|
| 82 |
pass
|
| 83 |
+
return "", x
|
| 84 |
|
| 85 |
|
| 86 |
def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
|
| 87 |
input_token_length = get_input_token_length(message, chat_history, system_prompt)
|
| 88 |
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
|
| 89 |
+
raise gr.Error(
|
| 90 |
+
f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again."
|
| 91 |
+
)
|
| 92 |
|
| 93 |
|
| 94 |
+
with gr.Blocks(css="style.css") as demo:
|
| 95 |
gr.Markdown(DESCRIPTION)
|
| 96 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
|
|
|
| 97 |
|
| 98 |
with gr.Group():
|
| 99 |
+
chatbot = gr.Chatbot(label="Chatbot")
|
| 100 |
with gr.Row():
|
| 101 |
textbox = gr.Textbox(
|
| 102 |
container=False,
|
| 103 |
show_label=False,
|
| 104 |
+
placeholder="Type a message...",
|
| 105 |
scale=10,
|
| 106 |
)
|
| 107 |
+
submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0)
|
|
|
|
|
|
|
|
|
|
| 108 |
with gr.Row():
|
| 109 |
+
retry_button = gr.Button("🔄 Retry", variant="secondary")
|
| 110 |
+
undo_button = gr.Button("↩️ Undo", variant="secondary")
|
| 111 |
+
clear_button = gr.Button("🗑️ Clear", variant="secondary")
|
| 112 |
|
| 113 |
saved_input = gr.State()
|
| 114 |
|
| 115 |
+
with gr.Accordion(label="Advanced options", open=False):
|
| 116 |
+
system_prompt = gr.Textbox(label="System prompt", value=DEFAULT_SYSTEM_PROMPT, lines=6)
|
|
|
|
|
|
|
| 117 |
max_new_tokens = gr.Slider(
|
| 118 |
+
label="Max new tokens",
|
| 119 |
minimum=1,
|
| 120 |
maximum=MAX_MAX_NEW_TOKENS,
|
| 121 |
step=1,
|
| 122 |
value=DEFAULT_MAX_NEW_TOKENS,
|
| 123 |
)
|
| 124 |
temperature = gr.Slider(
|
| 125 |
+
label="Temperature",
|
| 126 |
minimum=0.1,
|
| 127 |
maximum=4.0,
|
| 128 |
step=0.1,
|
| 129 |
value=1.0,
|
| 130 |
)
|
| 131 |
top_p = gr.Slider(
|
| 132 |
+
label="Top-p (nucleus sampling)",
|
| 133 |
minimum=0.05,
|
| 134 |
maximum=1.0,
|
| 135 |
step=0.05,
|
| 136 |
value=0.95,
|
| 137 |
)
|
| 138 |
top_k = gr.Slider(
|
| 139 |
+
label="Top-k",
|
| 140 |
minimum=1,
|
| 141 |
maximum=1000,
|
| 142 |
step=1,
|
|
|
|
| 145 |
|
| 146 |
gr.Examples(
|
| 147 |
examples=[
|
| 148 |
+
"Hello there! How are you doing?",
|
| 149 |
+
"Can you explain briefly to me what is the Python programming language?",
|
| 150 |
+
"Explain the plot of Cinderella in a sentence.",
|
| 151 |
+
"How many hours does it take a man to eat a Helicopter?",
|
| 152 |
"Write a 100-word article on 'Benefits of Open-Source in AI research'",
|
| 153 |
],
|
| 154 |
inputs=textbox,
|
|
|
|
| 191 |
api_name=False,
|
| 192 |
)
|
| 193 |
|
| 194 |
+
button_event_preprocess = (
|
| 195 |
+
submit_button.click(
|
| 196 |
+
fn=clear_and_save_textbox,
|
| 197 |
+
inputs=textbox,
|
| 198 |
+
outputs=[textbox, saved_input],
|
| 199 |
+
api_name=False,
|
| 200 |
+
queue=False,
|
| 201 |
+
)
|
| 202 |
+
.then(
|
| 203 |
+
fn=display_input,
|
| 204 |
+
inputs=[saved_input, chatbot],
|
| 205 |
+
outputs=chatbot,
|
| 206 |
+
api_name=False,
|
| 207 |
+
queue=False,
|
| 208 |
+
)
|
| 209 |
+
.then(
|
| 210 |
+
fn=check_input_token_length,
|
| 211 |
+
inputs=[saved_input, chatbot, system_prompt],
|
| 212 |
+
api_name=False,
|
| 213 |
+
queue=False,
|
| 214 |
+
)
|
| 215 |
+
.success(
|
| 216 |
+
fn=generate,
|
| 217 |
+
inputs=[
|
| 218 |
+
saved_input,
|
| 219 |
+
chatbot,
|
| 220 |
+
system_prompt,
|
| 221 |
+
max_new_tokens,
|
| 222 |
+
temperature,
|
| 223 |
+
top_p,
|
| 224 |
+
top_k,
|
| 225 |
+
],
|
| 226 |
+
outputs=chatbot,
|
| 227 |
+
api_name=False,
|
| 228 |
+
)
|
| 229 |
)
|
| 230 |
|
| 231 |
retry_button.click(
|
|
|
|
| 270 |
)
|
| 271 |
|
| 272 |
clear_button.click(
|
| 273 |
+
fn=lambda: ([], ""),
|
| 274 |
outputs=[chatbot, saved_input],
|
| 275 |
queue=False,
|
| 276 |
api_name=False,
|
model.py
CHANGED
|
@@ -4,53 +4,47 @@ from typing import Iterator
|
|
| 4 |
import torch
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 6 |
|
| 7 |
-
model_id =
|
| 8 |
|
| 9 |
if torch.cuda.is_available():
|
| 10 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
-
model_id,
|
| 12 |
-
torch_dtype=torch.float16,
|
| 13 |
-
device_map='auto'
|
| 14 |
-
)
|
| 15 |
else:
|
| 16 |
model = None
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 18 |
|
| 19 |
|
| 20 |
-
def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
| 21 |
-
|
| 22 |
-
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
|
| 23 |
# The first user input is _not_ stripped
|
| 24 |
do_strip = False
|
| 25 |
for user_input, response in chat_history:
|
| 26 |
user_input = user_input.strip() if do_strip else user_input
|
| 27 |
do_strip = True
|
| 28 |
-
texts.append(f
|
| 29 |
message = message.strip() if do_strip else message
|
| 30 |
-
texts.append(f
|
| 31 |
-
return
|
| 32 |
|
| 33 |
|
| 34 |
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int:
|
| 35 |
prompt = get_prompt(message, chat_history, system_prompt)
|
| 36 |
-
input_ids = tokenizer([prompt], return_tensors=
|
| 37 |
return input_ids.shape[-1]
|
| 38 |
|
| 39 |
|
| 40 |
-
def run(
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
prompt = get_prompt(message, chat_history, system_prompt)
|
| 48 |
-
inputs = tokenizer([prompt], return_tensors=
|
| 49 |
|
| 50 |
-
streamer = TextIteratorStreamer(tokenizer,
|
| 51 |
-
timeout=10.,
|
| 52 |
-
skip_prompt=True,
|
| 53 |
-
skip_special_tokens=True)
|
| 54 |
generate_kwargs = dict(
|
| 55 |
inputs,
|
| 56 |
streamer=streamer,
|
|
@@ -67,4 +61,4 @@ def run(message: str,
|
|
| 67 |
outputs = []
|
| 68 |
for text in streamer:
|
| 69 |
outputs.append(text)
|
| 70 |
-
yield
|
|
|
|
| 4 |
import torch
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 6 |
|
| 7 |
+
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
| 8 |
|
| 9 |
if torch.cuda.is_available():
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
else:
|
| 12 |
model = None
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 14 |
|
| 15 |
|
| 16 |
+
def get_prompt(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> str:
|
| 17 |
+
texts = [f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"]
|
|
|
|
| 18 |
# The first user input is _not_ stripped
|
| 19 |
do_strip = False
|
| 20 |
for user_input, response in chat_history:
|
| 21 |
user_input = user_input.strip() if do_strip else user_input
|
| 22 |
do_strip = True
|
| 23 |
+
texts.append(f"{user_input} [/INST] {response.strip()} </s><s>[INST] ")
|
| 24 |
message = message.strip() if do_strip else message
|
| 25 |
+
texts.append(f"{message} [/INST]")
|
| 26 |
+
return "".join(texts)
|
| 27 |
|
| 28 |
|
| 29 |
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int:
|
| 30 |
prompt = get_prompt(message, chat_history, system_prompt)
|
| 31 |
+
input_ids = tokenizer([prompt], return_tensors="np", add_special_tokens=False)["input_ids"]
|
| 32 |
return input_ids.shape[-1]
|
| 33 |
|
| 34 |
|
| 35 |
+
def run(
|
| 36 |
+
message: str,
|
| 37 |
+
chat_history: list[tuple[str, str]],
|
| 38 |
+
system_prompt: str,
|
| 39 |
+
max_new_tokens: int = 1024,
|
| 40 |
+
temperature: float = 0.8,
|
| 41 |
+
top_p: float = 0.95,
|
| 42 |
+
top_k: int = 50,
|
| 43 |
+
) -> Iterator[str]:
|
| 44 |
prompt = get_prompt(message, chat_history, system_prompt)
|
| 45 |
+
inputs = tokenizer([prompt], return_tensors="pt", add_special_tokens=False).to("cuda")
|
| 46 |
|
| 47 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
| 48 |
generate_kwargs = dict(
|
| 49 |
inputs,
|
| 50 |
streamer=streamer,
|
|
|
|
| 61 |
outputs = []
|
| 62 |
for text in streamer:
|
| 63 |
outputs.append(text)
|
| 64 |
+
yield "".join(outputs)
|