Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python | |
| from collections.abc import Iterator | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer | |
| model_id = "google/gemma-3-12b-it" | |
| processor = AutoProcessor.from_pretrained(model_id, padding_side="left") | |
| model = Gemma3ForConditionalGeneration.from_pretrained( | |
| model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager" | |
| ) | |
| def process_new_user_message(message: dict) -> list[dict]: | |
| return [{"type": "text", "text": message["text"]}, *[{"type": "image", "url": path} for path in message["files"]]] | |
| def process_history(history: list[dict]) -> list[dict]: | |
| messages = [] | |
| current_user_content: list[dict] = [] | |
| for item in history: | |
| if item["role"] == "assistant": | |
| if current_user_content: | |
| messages.append({"role": "user", "content": current_user_content}) | |
| current_user_content = [] | |
| messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
| else: | |
| content = item["content"] | |
| if isinstance(content, str): | |
| current_user_content.append({"type": "text", "text": content}) | |
| else: | |
| current_user_content.append({"type": "image", "url": content[0]}) | |
| return messages | |
| def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]: | |
| messages = [] | |
| if system_prompt: | |
| messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) | |
| messages.extend(process_history(history)) | |
| messages.append({"role": "user", "content": process_new_user_message(message)}) | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to(device=model.device, dtype=torch.bfloat16) | |
| streamer = TextIteratorStreamer(processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| inputs, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| output = "" | |
| for delta in streamer: | |
| output += delta | |
| yield output | |
| examples = [ | |
| [ | |
| { | |
| "text": "caption this image", | |
| "files": ["assets/sample-images/01.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "What's the sign says?", | |
| "files": ["assets/sample-images/02.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Compare and contrast the two images.", | |
| "files": ["assets/sample-images/03.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "List all the objects in the image and their colors.", | |
| "files": ["assets/sample-images/04.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Describe the atmosphere of the scene.", | |
| "files": ["assets/sample-images/05.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Write a poem inspired by the visual elements of the images.", | |
| "files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Compose a short musical piece inspired by the visual elements of the images.", | |
| "files": [ | |
| "assets/sample-images/07-1.png", | |
| "assets/sample-images/07-2.png", | |
| "assets/sample-images/07-3.png", | |
| "assets/sample-images/07-4.png", | |
| ], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Write a short story about what might have happened in this house.", | |
| "files": ["assets/sample-images/08.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Create a short story based on the sequence of images.", | |
| "files": [ | |
| "assets/sample-images/09-1.png", | |
| "assets/sample-images/09-2.png", | |
| "assets/sample-images/09-3.png", | |
| "assets/sample-images/09-4.png", | |
| "assets/sample-images/09-5.png", | |
| ], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Describe the creatures that would live in this world.", | |
| "files": ["assets/sample-images/10.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Read text in the image.", | |
| "files": ["assets/additional-examples/1.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "When is this ticket dated and how much did it cost?", | |
| "files": ["assets/additional-examples/2.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Read the text in the image into markdown.", | |
| "files": ["assets/additional-examples/3.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Evaluate this integral.", | |
| "files": ["assets/additional-examples/4.png"], | |
| } | |
| ], | |
| ] | |
| demo = gr.ChatInterface( | |
| fn=run, | |
| type="messages", | |
| textbox=gr.MultimodalTextbox(file_types=["image"], file_count="multiple"), | |
| multimodal=True, | |
| additional_inputs=[ | |
| gr.Textbox(label="System Prompt", value="You are a helpful assistant."), | |
| gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=500), | |
| ], | |
| stop_btn=False, | |
| title="Gemma 3 12B it", | |
| description="<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' />", | |
| examples=examples, | |
| run_examples_on_click=False, | |
| cache_examples=False, | |
| css_paths="style.css", | |
| delete_cache=(1800, 1800), | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |