Spaces:
Running
Running
Format code
Browse files- .gitignore +1 -0
- .vscode/settings.json +6 -0
- app.py +52 -14
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.env/
|
.vscode/settings.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"[python]": {
|
| 3 |
+
"editor.defaultFormatter": "ms-python.black-formatter"
|
| 4 |
+
},
|
| 5 |
+
"editor.formatOnSave": true
|
| 6 |
+
}
|
app.py
CHANGED
|
@@ -5,50 +5,79 @@ import torch
|
|
| 5 |
from transformers import AutoModel, AutoTokenizer
|
| 6 |
import meilisearch
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
model.eval()
|
| 11 |
|
| 12 |
cuda_available = torch.cuda.is_available()
|
| 13 |
print(f"CUDA available: {cuda_available}")
|
| 14 |
|
| 15 |
-
meilisearch_client = meilisearch.Client(
|
|
|
|
|
|
|
| 16 |
meilisearch_index_name = "docs-embed"
|
| 17 |
meilisearch_index = meilisearch_client.index(meilisearch_index_name)
|
| 18 |
|
| 19 |
output_options = ["RAG-friendly", "human-friendly"]
|
| 20 |
|
|
|
|
| 21 |
def search_embeddings(query_text, output_option):
|
| 22 |
start_time_embedding = time.time()
|
| 23 |
-
query_prefix =
|
| 24 |
-
query_tokens =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# step1: tokenizer the query
|
| 26 |
with torch.no_grad():
|
| 27 |
# Compute token embeddings
|
| 28 |
model_output = model(**query_tokens)
|
| 29 |
sentence_embeddings = model_output[0][:, 0]
|
| 30 |
# normalize embeddings
|
| 31 |
-
sentence_embeddings = torch.nn.functional.normalize(
|
|
|
|
|
|
|
| 32 |
sentence_embeddings_list = sentence_embeddings[0].tolist()
|
| 33 |
elapsed_time_embedding = time.time() - start_time_embedding
|
| 34 |
-
|
| 35 |
# step2: search meilisearch
|
| 36 |
start_time_meilisearch = time.time()
|
| 37 |
response = meilisearch_index.search(
|
| 38 |
-
"",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
elapsed_time_meilisearch = time.time() - start_time_meilisearch
|
| 41 |
hits = response["hits"]
|
| 42 |
|
| 43 |
-
sources_md = [
|
|
|
|
|
|
|
| 44 |
sources_md = ", ".join(sources_md)
|
| 45 |
|
| 46 |
# step3: present the results in markdown
|
| 47 |
if output_option == "human-friendly":
|
| 48 |
md = f"Stats:\n\nembedding time: {elapsed_time_embedding:.2f}s\n\nmeilisearch time: {elapsed_time_meilisearch:.2f}s\n\n---\n\n"
|
| 49 |
for hit in hits:
|
| 50 |
-
text, source_page_url, source_page_title =
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
md += text + f"\n\n{source}\n\n---\n\n"
|
| 53 |
return md, sources_md
|
| 54 |
elif output_option == "RAG-friendly":
|
|
@@ -59,11 +88,20 @@ def search_embeddings(query_text, output_option):
|
|
| 59 |
|
| 60 |
demo = gr.Interface(
|
| 61 |
fn=search_embeddings,
|
| 62 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
outputs=[gr.Markdown(), gr.Markdown()],
|
| 64 |
title="HF Docs Emebddings Explorer",
|
| 65 |
-
allow_flagging="never"
|
| 66 |
)
|
| 67 |
|
| 68 |
if __name__ == "__main__":
|
| 69 |
-
demo.launch()
|
|
|
|
| 5 |
from transformers import AutoModel, AutoTokenizer
|
| 6 |
import meilisearch
|
| 7 |
|
| 8 |
+
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-base-en-v1.5")
|
| 10 |
+
model = AutoModel.from_pretrained("BAAI/bge-base-en-v1.5")
|
| 11 |
model.eval()
|
| 12 |
|
| 13 |
cuda_available = torch.cuda.is_available()
|
| 14 |
print(f"CUDA available: {cuda_available}")
|
| 15 |
|
| 16 |
+
meilisearch_client = meilisearch.Client(
|
| 17 |
+
"https://edge.meilisearch.com", os.environ["MEILISEARCH_KEY"]
|
| 18 |
+
)
|
| 19 |
meilisearch_index_name = "docs-embed"
|
| 20 |
meilisearch_index = meilisearch_client.index(meilisearch_index_name)
|
| 21 |
|
| 22 |
output_options = ["RAG-friendly", "human-friendly"]
|
| 23 |
|
| 24 |
+
|
| 25 |
def search_embeddings(query_text, output_option):
|
| 26 |
start_time_embedding = time.time()
|
| 27 |
+
query_prefix = "Represent this sentence for searching code documentation: "
|
| 28 |
+
query_tokens = tokenizer(
|
| 29 |
+
query_prefix + query_text,
|
| 30 |
+
padding=True,
|
| 31 |
+
truncation=True,
|
| 32 |
+
return_tensors="pt",
|
| 33 |
+
max_length=512,
|
| 34 |
+
)
|
| 35 |
# step1: tokenizer the query
|
| 36 |
with torch.no_grad():
|
| 37 |
# Compute token embeddings
|
| 38 |
model_output = model(**query_tokens)
|
| 39 |
sentence_embeddings = model_output[0][:, 0]
|
| 40 |
# normalize embeddings
|
| 41 |
+
sentence_embeddings = torch.nn.functional.normalize(
|
| 42 |
+
sentence_embeddings, p=2, dim=1
|
| 43 |
+
)
|
| 44 |
sentence_embeddings_list = sentence_embeddings[0].tolist()
|
| 45 |
elapsed_time_embedding = time.time() - start_time_embedding
|
| 46 |
+
|
| 47 |
# step2: search meilisearch
|
| 48 |
start_time_meilisearch = time.time()
|
| 49 |
response = meilisearch_index.search(
|
| 50 |
+
"",
|
| 51 |
+
opt_params={
|
| 52 |
+
"vector": sentence_embeddings_list,
|
| 53 |
+
"hybrid": {"semanticRatio": 1.0},
|
| 54 |
+
"limit": 5,
|
| 55 |
+
"attributesToRetrieve": [
|
| 56 |
+
"text",
|
| 57 |
+
"source_page_url",
|
| 58 |
+
"source_page_title",
|
| 59 |
+
"library",
|
| 60 |
+
],
|
| 61 |
+
},
|
| 62 |
)
|
| 63 |
elapsed_time_meilisearch = time.time() - start_time_meilisearch
|
| 64 |
hits = response["hits"]
|
| 65 |
|
| 66 |
+
sources_md = [
|
| 67 |
+
f"[\"{hit['source_page_title']}\"]({hit['source_page_url']})" for hit in hits
|
| 68 |
+
]
|
| 69 |
sources_md = ", ".join(sources_md)
|
| 70 |
|
| 71 |
# step3: present the results in markdown
|
| 72 |
if output_option == "human-friendly":
|
| 73 |
md = f"Stats:\n\nembedding time: {elapsed_time_embedding:.2f}s\n\nmeilisearch time: {elapsed_time_meilisearch:.2f}s\n\n---\n\n"
|
| 74 |
for hit in hits:
|
| 75 |
+
text, source_page_url, source_page_title = (
|
| 76 |
+
hit["text"],
|
| 77 |
+
hit["source_page_url"],
|
| 78 |
+
hit["source_page_title"],
|
| 79 |
+
)
|
| 80 |
+
source = f'src: ["{source_page_title}"]({source_page_url})'
|
| 81 |
md += text + f"\n\n{source}\n\n---\n\n"
|
| 82 |
return md, sources_md
|
| 83 |
elif output_option == "RAG-friendly":
|
|
|
|
| 88 |
|
| 89 |
demo = gr.Interface(
|
| 90 |
fn=search_embeddings,
|
| 91 |
+
inputs=[
|
| 92 |
+
gr.Textbox(
|
| 93 |
+
label="enter your query", placeholder="Type Markdown here...", lines=10
|
| 94 |
+
),
|
| 95 |
+
gr.Radio(
|
| 96 |
+
label="Select an output option",
|
| 97 |
+
choices=output_options,
|
| 98 |
+
value="RAG-friendly",
|
| 99 |
+
),
|
| 100 |
+
],
|
| 101 |
outputs=[gr.Markdown(), gr.Markdown()],
|
| 102 |
title="HF Docs Emebddings Explorer",
|
| 103 |
+
allow_flagging="never",
|
| 104 |
)
|
| 105 |
|
| 106 |
if __name__ == "__main__":
|
| 107 |
+
demo.launch()
|