File size: 12,319 Bytes
427fd9c
8ac00e3
1fedfc5
0ade04a
 
1fedfc5
c2be249
3f17e4b
1b94f8b
1fedfc5
4ed9de7
1b94f8b
 
48c538b
 
 
 
 
1b94f8b
48c538b
 
1b94f8b
48c538b
 
 
 
 
 
1b94f8b
48c538b
 
1b94f8b
 
48c538b
 
1b94f8b
 
 
 
 
48c538b
1fedfc5
48c538b
1b94f8b
0ade04a
94990ac
820c44b
02d3f79
c2be249
1fedfc5
d6059b9
02d3f79
d6059b9
02d3f79
c2be249
820c44b
bbeae4b
1b94f8b
 
 
bbeae4b
c2be249
fd2ecc8
 
e72bc1b
1b94f8b
 
 
 
 
 
4ed9de7
 
73fc96d
 
e72bc1b
02d3f79
bbeae4b
0ade04a
48c538b
 
02d3f79
c2be249
1b94f8b
48c538b
3494b39
820c44b
02d3f79
1fedfc5
0ade04a
1b94f8b
0ade04a
1b94f8b
0ade04a
 
 
94990ac
1fedfc5
 
0ade04a
02d3f79
3f17e4b
02d3f79
1fedfc5
c2be249
48c538b
 
02d3f79
3f17e4b
48c538b
3f17e4b
 
02d3f79
3f17e4b
 
1b94f8b
3f17e4b
 
94990ac
3f17e4b
 
 
 
02d3f79
3f17e4b
02d3f79
3f17e4b
 
48c538b
 
02d3f79
2fe706b
1fedfc5
3f17e4b
e72bc1b
1fedfc5
e72bc1b
 
 
3f17e4b
1b94f8b
bbeae4b
820c44b
1b94f8b
820c44b
1fedfc5
820c44b
1b94f8b
 
 
 
 
94990ac
1b94f8b
 
bbeae4b
0ade04a
bbeae4b
1fedfc5
 
1b94f8b
bbeae4b
3f17e4b
 
1b94f8b
 
bbeae4b
1b94f8b
 
 
3f17e4b
bbeae4b
1b94f8b
94990ac
1b94f8b
 
48c538b
 
1b94f8b
48c538b
bbeae4b
1b94f8b
 
 
02d3f79
1b94f8b
0fc2a04
1fedfc5
e72bc1b
 
 
820c44b
bbeae4b
820c44b
1b94f8b
3f17e4b
1fedfc5
820c44b
1b94f8b
 
 
 
 
94990ac
1b94f8b
 
0ade04a
1b94f8b
 
0ade04a
1b94f8b
1fedfc5
c926c74
1fedfc5
e72bc1b
2fe706b
1fedfc5
bbeae4b
3f17e4b
1b94f8b
 
 
bbeae4b
1b94f8b
 
 
3f17e4b
bbeae4b
1b94f8b
 
3f17e4b
bbeae4b
1b94f8b
94990ac
1b94f8b
 
48c538b
 
1b94f8b
48c538b
bbeae4b
2fe706b
 
1b94f8b
02d3f79
3f17e4b
 
 
 
 
 
 
bbeae4b
3f17e4b
1b94f8b
3f17e4b
 
 
1b94f8b
 
 
 
 
94990ac
1b94f8b
 
3f17e4b
1b94f8b
 
3f17e4b
 
 
 
 
 
bbeae4b
3f17e4b
 
1b94f8b
 
bbeae4b
1b94f8b
 
 
3f17e4b
bbeae4b
1b94f8b
 
3f17e4b
 
1b94f8b
94990ac
1b94f8b
 
48c538b
 
1b94f8b
48c538b
bbeae4b
3f17e4b
 
1b94f8b
02d3f79
2fe706b
 
 
bbeae4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
os.environ["TORCH_DYNAMO_DISABLE"] = "1"
import tempfile
import numpy as np
import gradio as gr
from ase.io import read, write
from ase.io.trajectory import Trajectory
from gradio_molecule3d import Molecule3D
from simulation_scripts_orbmol import load_orbmol_model, run_md_simulation, run_relaxation_simulation
import hashlib

# ==== Configuración Molecule3D (igual que Facebook UMA) ====
DEFAULT_MOLECULAR_REPRESENTATIONS = [
    {
        "model": 0,
        "chain": "",
        "resname": "",
        "style": "sphere",
        "color": "Jmol",
        "around": 0,
        "byres": False,
        "scale": 0.3,
    },
    {
        "model": 0,
        "chain": "",
        "resname": "",
        "style": "stick",
        "color": "Jmol",
        "around": 0,
        "byres": False,
        "scale": 0.2,
    },
]

DEFAULT_MOLECULAR_SETTINGS = {
    "backgroundColor": "white",
    "orthographic": False,
    "disableFog": False,
}

# ==== OrbMol SPE ====
def predict_molecule(structure_file, task_name, charge=0, spin_multiplicity=1):
    """Single Point Energy + fuerzas (OrbMol)"""
    try:
        calc = load_orbmol_model(task_name)
        if not structure_file:
            return "Error: Please upload a structure file", "Error"

        file_path = structure_file
        if not os.path.exists(file_path):
            return f"Error: File not found: {file_path}", "Error"
        if os.path.getsize(file_path) == 0:
            return f"Error: Empty file: {file_path}", "Error"

        atoms = read(file_path)

        # Solo aplicar charge/spin para OMol
        if task_name in ["OMol", "OMol-Direct"]:
            atoms.info = {"charge": int(charge), "spin": int(spin_multiplicity)}

        atoms.calc = calc
        energy = atoms.get_potential_energy()
        forces = atoms.get_forces()

        lines = [
            f"Model: {task_name}",
            f"Total Energy: {energy:.6f} eV",
            "",
            "Atomic Forces:"
        ]
        for i, fc in enumerate(forces):
            lines.append(f"Atom {i+1}: [{fc[0]:.4f}, {fc[1]:.4f}, {fc[2]:.4f}] eV/Å")
        max_force = float(np.max(np.linalg.norm(forces, axis=1)))
        lines += ["", f"Max Force: {max_force:.4f} eV/Å"]

        return "\n".join(lines), f"Calculation completed with {task_name}"

    except Exception as e:
        import traceback
        traceback.print_exc()
        return f"Error during calculation: {e}", "Error"

# ==== Wrappers MD y Relax ====
def md_wrapper(structure_file, task_name, charge, spin, steps, tempK, timestep_fs, ensemble):
    try:
        if not structure_file:
            return ("Error: Please upload a structure file", None, "", "", "")

        traj_path, log_text, script_text, explanation = run_md_simulation(
            structure_file,
            int(steps),
            20,
            float(timestep_fs),
            float(tempK),
            "NVT" if ensemble == "NVT" else "NVE",
            str(task_name),
            int(charge),
            int(spin),
        )
        status = f"MD completed: {int(steps)} steps at {int(tempK)} K ({ensemble})"

        return (status, traj_path, log_text, script_text, explanation)

    except Exception as e:
        import traceback
        traceback.print_exc()
        return (f"Error: {e}", None, "", "", "")

def relax_wrapper(structure_file, task_name, steps, fmax, charge, spin, relax_cell):
    try:
        if not structure_file:
            return ("Error: Please upload a structure file", None, "", "", "")

        traj_path, log_text, script_text, explanation = run_relaxation_simulation(
            structure_file,
            int(steps),
            float(fmax),
            str(task_name),
            int(charge),
            int(spin),
            bool(relax_cell),
        )
        status = f"Relaxation finished (<={int(steps)} steps, fmax={float(fmax)} eV/Å)"

        return (status, traj_path, log_text, script_text, explanation)

    except Exception as e:
        import traceback
        traceback.print_exc()
        return (f"Error: {e}", None, "", "", "")

# ==== UI ====
with gr.Blocks(theme=gr.themes.Ocean(), title="OrbMol Demo") as demo:
    with gr.Tabs():
        # -------- SPE --------
        with gr.Tab("Single Point Energy"):
            with gr.Row():
                with gr.Column(scale=2):
                    gr.Markdown("# OrbMol — Quantum-Accurate Molecular Predictions")
                    gr.Markdown("**Supported formats:** .xyz, .pdb, .cif, .traj, .mol, .sdf")

                    xyz_input = gr.File(
                        label="Upload Structure File",
                        file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
                        file_count="single"
                    )
                    task_name_spe = gr.Radio(
                        ["OMol", "OMat", "OMol-Direct"],
                        value="OMol",
                        label="Model Type"
                    )
                    with gr.Row():
                        charge_input = gr.Slider(-10, 10, 0, step=1, label="Charge")
                        spin_input = gr.Slider(1, 11, 1, step=1, label="Spin Multiplicity")

                    run_spe = gr.Button("Run OrbMol Prediction", variant="primary")

                with gr.Column(variant="panel", min_width=500):
                    spe_out = gr.Textbox(label="Energy & Forces", lines=15, interactive=False)
                    spe_status = gr.Textbox(label="Status", interactive=False)

                    spe_viewer = Molecule3D(
                        label="Input Structure Viewer",
                        reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
                        config=DEFAULT_MOLECULAR_SETTINGS,
                        render=True,               # ← activado
                        inputs=[xyz_input],
                        value=lambda x: x,
                        interactive=False
                    )

                    task_name_spe.change(
                        lambda x: (
                            gr.update(visible=x in ["OMol", "OMol-Direct"]),
                            gr.update(visible=x in ["OMol", "OMol-Direct"])
                        ),
                        [task_name_spe],
                        [charge_input, spin_input]
                    )

            run_spe.click(
                predict_molecule,
                [xyz_input, task_name_spe, charge_input, spin_input],
                [spe_out, spe_status]
            )

        # -------- MD --------
        with gr.Tab("Molecular Dynamics"):
            with gr.Row():
                with gr.Column(scale=2):
                    gr.Markdown("## Molecular Dynamics Simulation")

                    xyz_md = gr.File(
                        label="Upload Structure File",
                        file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
                        file_count="single"
                    )
                    task_name_md = gr.Radio(
                        ["OMol", "OMat", "OMol-Direct"],
                        value="OMol",
                        label="Model Type"
                    )
                    with gr.Row():
                        charge_md = gr.Slider(-10, 10, 0, step=1, label="Charge")
                        spin_md = gr.Slider(1, 11, 1, step=1, label="Spin Multiplicity")
                    with gr.Row():
                        steps_md = gr.Slider(10, 2000, 100, step=10, label="Steps")
                        temp_md = gr.Slider(10, 1500, 300, step=10, label="Temperature (K)")
                    with gr.Row():
                        timestep_md = gr.Slider(0.1, 5.0, 1.0, step=0.1, label="Timestep (fs)")
                        ensemble_md = gr.Radio(["NVE", "NVT"], value="NVE", label="Ensemble")
                    run_md_btn = gr.Button("Run MD Simulation", variant="primary")

                with gr.Column(variant="panel", min_width=520):
                    md_status = gr.Textbox(label="MD Status", interactive=False)
                    md_traj = gr.File(label="Trajectory (.traj)", interactive=False)

                    md_viewer = Molecule3D(
                        label="MD Result Viewer",
                        reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
                        config=DEFAULT_MOLECULAR_SETTINGS,
                        render=True,               # ← activado
                        inputs=[md_traj],
                        value=lambda x: x,
                        interactive=False
                    )

                    md_log = gr.Textbox(label="Log", interactive=False, lines=15)
                    md_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20)
                    md_explain = gr.Markdown()

                    task_name_md.change(
                        lambda x: (
                            gr.update(visible=x in ["OMol", "OMol-Direct"]),
                            gr.update(visible=x in ["OMol", "OMol-Direct"])
                        ),
                        [task_name_md],
                        [charge_md, spin_md]
                    )

            run_md_btn.click(
                md_wrapper,
                [xyz_md, task_name_md, charge_md, spin_md, steps_md, temp_md, timestep_md, ensemble_md],
                [md_status, md_traj, md_log, md_script, md_explain]
            )

        # -------- Relax --------
        with gr.Tab("Relaxation / Optimization"):
            with gr.Row():
                with gr.Column(scale=2):
                    gr.Markdown("## Structure Relaxation/Optimization")

                    xyz_rlx = gr.File(
                        label="Upload Structure File",
                        file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
                        file_count="single"
                    )
                    task_name_rlx = gr.Radio(
                        ["OMol", "OMat", "OMol-Direct"],
                        value="OMol",
                        label="Model Type"
                    )
                    with gr.Row():
                        steps_rlx = gr.Slider(1, 2000, 300, step=1, label="Max Steps")
                        fmax_rlx = gr.Slider(0.001, 0.5, 0.05, step=0.001, label="Fmax (eV/Å)")
                    with gr.Row():
                        charge_rlx = gr.Slider(-10, 10, 0, step=1, label="Charge")
                        spin_rlx = gr.Slider(1, 11, 1, step=1, label="Spin")
                    relax_cell = gr.Checkbox(False, label="Relax Unit Cell")
                    run_rlx_btn = gr.Button("Run Optimization", variant="primary")

                with gr.Column(variant="panel", min_width=520):
                    rlx_status = gr.Textbox(label="Status", interactive=False)
                    rlx_traj = gr.File(label="Trajectory (.traj)", interactive=False)

                    rlx_viewer = Molecule3D(
                        label="Optimized Structure Viewer",
                        reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
                        config=DEFAULT_MOLECULAR_SETTINGS,
                        render=True,               # ← activado
                        inputs=[rlx_traj],
                        value=lambda x: x,
                        interactive=False
                    )

                    rlx_log = gr.Textbox(label="Log", interactive=False, lines=15)
                    rlx_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20)
                    rlx_explain = gr.Markdown()

                    task_name_rlx.change(
                        lambda x: (
                            gr.update(visible=x in ["OMol", "OMol-Direct"]),
                            gr.update(visible=x in ["OMol", "OMol-Direct"])
                        ),
                        [task_name_rlx],
                        [charge_rlx, spin_rlx]
                    )

            run_rlx_btn.click(
                relax_wrapper,
                [xyz_rlx, task_name_rlx, steps_rlx, fmax_rlx, charge_rlx, spin_rlx, relax_cell],
                [rlx_status, rlx_traj, rlx_log, rlx_script, rlx_explain]
            )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)