Santosh
commited on
Commit
·
616d667
1
Parent(s):
2ccb279
fixed things
Browse files- app.py +372 -87
- datasetcards_new.parquet +3 -0
app.py
CHANGED
|
@@ -1,46 +1,46 @@
|
|
| 1 |
# import gradio as gr
|
| 2 |
# import polars as pl
|
| 3 |
|
| 4 |
-
# #
|
| 5 |
-
#
|
| 6 |
-
# MISSING_PARQUET_PATH = "all_minimal_dataset_cards.parquet"
|
| 7 |
|
| 8 |
# ROWS_PER_PAGE = 50
|
| 9 |
|
| 10 |
-
# # Lazy load
|
| 11 |
-
#
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
#
|
|
|
|
| 15 |
|
| 16 |
# # Helper function to fetch a page
|
| 17 |
# def get_page(lazy_df: pl.LazyFrame, page: int, column: str = None, query: str = ""):
|
| 18 |
# filtered_df = lazy_df
|
| 19 |
# if column and query:
|
| 20 |
# query_lower = query.lower().strip()
|
| 21 |
-
# # Case-insensitive search
|
| 22 |
# filtered_df = filtered_df.with_columns([
|
| 23 |
# pl.col(column).cast(pl.Utf8).str.to_lowercase().alias(column)
|
| 24 |
# ]).filter(pl.col(column).str.contains(query_lower, literal=False))
|
| 25 |
# start = page * ROWS_PER_PAGE
|
| 26 |
# page_df = filtered_df.slice(start, ROWS_PER_PAGE).collect().to_pandas()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# total_rows = filtered_df.collect().height
|
| 28 |
# total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1
|
| 29 |
# return page_df, total_pages
|
| 30 |
|
|
|
|
| 31 |
# # Initialize first page
|
| 32 |
-
# initial_df, total_pages = get_page(
|
| 33 |
# columns = list(initial_df.columns)
|
| 34 |
|
| 35 |
# with gr.Blocks() as demo:
|
| 36 |
# gr.Markdown("## Dataset Insight Portal")
|
| 37 |
-
|
| 38 |
-
#
|
| 39 |
-
#
|
| 40 |
-
# choices=["DatasetCards rich in information", "DatasetCards missing information"],
|
| 41 |
-
# value="DatasetCards missing information",
|
| 42 |
-
# label="Select Dataset"
|
| 43 |
-
# )
|
| 44 |
|
| 45 |
# # Pagination controls
|
| 46 |
# with gr.Row():
|
|
@@ -63,17 +63,7 @@
|
|
| 63 |
# reset_btn = gr.Button("Reset", elem_id="small-btn")
|
| 64 |
|
| 65 |
# # --- Functions ---
|
| 66 |
-
#
|
| 67 |
-
# global current_lazy_df
|
| 68 |
-
# current_lazy_df = lazy_rich if dataset_choice == "DatasetCards rich in information" else lazy_missing
|
| 69 |
-
# initial_df, total_pages = get_page(current_lazy_df, 0)
|
| 70 |
-
# columns = list(initial_df.columns)
|
| 71 |
-
# return (
|
| 72 |
-
# gr.update(value=initial_df, headers=columns),
|
| 73 |
-
# f"Total Pages: {total_pages}",
|
| 74 |
-
# 0,
|
| 75 |
-
# gr.update(choices=columns, value=columns[0])
|
| 76 |
-
# )
|
| 77 |
|
| 78 |
# def next_page_func(page, column, query):
|
| 79 |
# page += 1
|
|
@@ -98,7 +88,6 @@
|
|
| 98 |
# return page_df, f"Total Pages: {total_pages}", 0
|
| 99 |
|
| 100 |
# # --- Event Listeners ---
|
| 101 |
-
# dataset_select.change(load_dataset, dataset_select, [data_table, total_pages_display, page_number, col_dropdown])
|
| 102 |
# next_btn.click(next_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
| 103 |
# prev_btn.click(prev_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
| 104 |
# search_btn.click(search_func, [col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
|
@@ -107,90 +96,386 @@
|
|
| 107 |
# demo.launch()
|
| 108 |
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
import gradio as gr
|
| 111 |
import polars as pl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
|
|
|
| 115 |
|
| 116 |
-
|
| 117 |
|
| 118 |
-
#
|
| 119 |
-
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
#
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
if column and query:
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
| 130 |
start = page * ROWS_PER_PAGE
|
| 131 |
-
page_df = filtered_df
|
| 132 |
-
total_rows = filtered_df.
|
| 133 |
-
total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1
|
| 134 |
return page_df, total_pages
|
| 135 |
|
| 136 |
-
|
| 137 |
-
initial_df, total_pages = get_page(lazy_df, 0)
|
| 138 |
columns = list(initial_df.columns)
|
| 139 |
|
| 140 |
with gr.Blocks() as demo:
|
| 141 |
-
gr.Markdown("
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
with gr.Row():
|
| 147 |
-
prev_btn = gr.Button("Previous"
|
| 148 |
-
next_btn = gr.Button("Next"
|
| 149 |
page_number = gr.Number(value=0, label="Page", precision=0)
|
| 150 |
total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")
|
| 151 |
|
| 152 |
-
# Data table
|
| 153 |
data_table = gr.Dataframe(
|
| 154 |
-
value=initial_df,
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
| 156 |
)
|
| 157 |
|
| 158 |
-
#
|
| 159 |
with gr.Row():
|
| 160 |
-
col_dropdown = gr.Dropdown(choices=columns, label="Column")
|
| 161 |
-
search_text = gr.Textbox(label="Search")
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
page += 1
|
| 170 |
-
|
|
|
|
| 171 |
if page >= total_pages:
|
| 172 |
page = total_pages - 1
|
| 173 |
-
page_df, total_pages = get_page(
|
| 174 |
-
return page_df, f"Total Pages: {total_pages}", page
|
| 175 |
|
| 176 |
-
def
|
| 177 |
-
page
|
| 178 |
-
|
| 179 |
-
page_df, total_pages = get_page(
|
| 180 |
-
return page_df, f"Total Pages: {total_pages}", page
|
| 181 |
-
|
| 182 |
-
def search_func(column, query):
|
| 183 |
-
page_df, total_pages = get_page(current_lazy_df, 0, column, query)
|
| 184 |
-
return page_df, f"Total Pages: {total_pages}", 0
|
| 185 |
|
| 186 |
def reset_func():
|
| 187 |
-
page_df, total_pages = get_page(
|
| 188 |
-
return page_df, f"Total Pages: {total_pages}", 0
|
| 189 |
-
|
| 190 |
-
# ---
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
demo.launch()
|
|
|
|
| 1 |
# import gradio as gr
|
| 2 |
# import polars as pl
|
| 3 |
|
| 4 |
+
# # Path for the combined Parquet file
|
| 5 |
+
# COMBINED_PARQUET_PATH = "datasetcards.parquet"
|
|
|
|
| 6 |
|
| 7 |
# ROWS_PER_PAGE = 50
|
| 8 |
|
| 9 |
+
# # Lazy load dataset
|
| 10 |
+
# lazy_df = pl.scan_parquet(COMBINED_PARQUET_PATH)
|
| 11 |
+
# lazy_df = lazy_df.sort(
|
| 12 |
+
# by=["downloads", "last_modified"],
|
| 13 |
+
# descending=[True, True]
|
| 14 |
+
# )
|
| 15 |
|
| 16 |
# # Helper function to fetch a page
|
| 17 |
# def get_page(lazy_df: pl.LazyFrame, page: int, column: str = None, query: str = ""):
|
| 18 |
# filtered_df = lazy_df
|
| 19 |
# if column and query:
|
| 20 |
# query_lower = query.lower().strip()
|
|
|
|
| 21 |
# filtered_df = filtered_df.with_columns([
|
| 22 |
# pl.col(column).cast(pl.Utf8).str.to_lowercase().alias(column)
|
| 23 |
# ]).filter(pl.col(column).str.contains(query_lower, literal=False))
|
| 24 |
# start = page * ROWS_PER_PAGE
|
| 25 |
# page_df = filtered_df.slice(start, ROWS_PER_PAGE).collect().to_pandas()
|
| 26 |
+
|
| 27 |
+
# # Replace NaN/None with empty string for display
|
| 28 |
+
# page_df = page_df.fillna("")
|
| 29 |
+
|
| 30 |
# total_rows = filtered_df.collect().height
|
| 31 |
# total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1
|
| 32 |
# return page_df, total_pages
|
| 33 |
|
| 34 |
+
|
| 35 |
# # Initialize first page
|
| 36 |
+
# initial_df, total_pages = get_page(lazy_df, 0)
|
| 37 |
# columns = list(initial_df.columns)
|
| 38 |
|
| 39 |
# with gr.Blocks() as demo:
|
| 40 |
# gr.Markdown("## Dataset Insight Portal")
|
| 41 |
+
# gr.Markdown("This space allows you to explore the dataset of DatasetCards.<br>"
|
| 42 |
+
# "You can navigate pages, search within columns, and inspect the dataset easily.<br>"
|
| 43 |
+
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# # Pagination controls
|
| 46 |
# with gr.Row():
|
|
|
|
| 63 |
# reset_btn = gr.Button("Reset", elem_id="small-btn")
|
| 64 |
|
| 65 |
# # --- Functions ---
|
| 66 |
+
# current_lazy_df = lazy_df # single dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# def next_page_func(page, column, query):
|
| 69 |
# page += 1
|
|
|
|
| 88 |
# return page_df, f"Total Pages: {total_pages}", 0
|
| 89 |
|
| 90 |
# # --- Event Listeners ---
|
|
|
|
| 91 |
# next_btn.click(next_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
| 92 |
# prev_btn.click(prev_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
| 93 |
# search_btn.click(search_func, [col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
|
|
|
| 96 |
# demo.launch()
|
| 97 |
|
| 98 |
|
| 99 |
+
# import gradio as gr
|
| 100 |
+
# import polars as pl
|
| 101 |
+
|
| 102 |
+
# COMBINED_PARQUET_PATH = "datasetcards.parquet"
|
| 103 |
+
# ROWS_PER_PAGE = 50
|
| 104 |
+
|
| 105 |
+
# # Load dataset
|
| 106 |
+
# df = pl.read_parquet(COMBINED_PARQUET_PATH) # eager DataFrame
|
| 107 |
+
|
| 108 |
+
# # Columns with dropdown instead of text search
|
| 109 |
+
# DROPDOWN_COLUMNS = ["reason", "category", "field", "keyword"]
|
| 110 |
+
|
| 111 |
+
# # Get unique values for the dropdown columns
|
| 112 |
+
# unique_values = {
|
| 113 |
+
# col: sorted(df[col].drop_nulls().unique().to_list()) for col in DROPDOWN_COLUMNS
|
| 114 |
+
# }
|
| 115 |
+
|
| 116 |
+
# # Get page helper
|
| 117 |
+
# def get_page(df, page, column, query):
|
| 118 |
+
# filtered_df = df
|
| 119 |
+
|
| 120 |
+
# if column and query:
|
| 121 |
+
# if column in DROPDOWN_COLUMNS:
|
| 122 |
+
# # Exact match from dropdown
|
| 123 |
+
# filtered_df = filtered_df.filter(pl.col(column) == query)
|
| 124 |
+
# else:
|
| 125 |
+
# # Text search
|
| 126 |
+
# q = query.lower().strip()
|
| 127 |
+
# filtered_df = (
|
| 128 |
+
# filtered_df.with_columns([
|
| 129 |
+
# pl.col(column).str.to_lowercase().alias(column)
|
| 130 |
+
# ])
|
| 131 |
+
# .filter(pl.col(column).str.contains(q, literal=False))
|
| 132 |
+
# )
|
| 133 |
+
|
| 134 |
+
# start = page * ROWS_PER_PAGE
|
| 135 |
+
# page_df = filtered_df[start:start + ROWS_PER_PAGE].to_pandas().fillna("")
|
| 136 |
+
# total_rows = filtered_df.height
|
| 137 |
+
# total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1 if total_rows > 0 else 1
|
| 138 |
+
|
| 139 |
+
# return page_df, total_pages
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# # Initial page
|
| 143 |
+
# initial_df, total_pages = get_page(df, 0, None, "")
|
| 144 |
+
# columns = list(initial_df.columns)
|
| 145 |
+
|
| 146 |
+
# # Build Gradio app
|
| 147 |
+
# with gr.Blocks() as demo:
|
| 148 |
+
# gr.Markdown("## Dataset Insight Portal")
|
| 149 |
+
# gr.Markdown(
|
| 150 |
+
# "This space allows you to explore the dataset of DatasetCards.<br>"
|
| 151 |
+
# "You can navigate pages, search within columns, and inspect the dataset easily.<br>"
|
| 152 |
+
# )
|
| 153 |
+
|
| 154 |
+
# with gr.Row():
|
| 155 |
+
# prev_btn = gr.Button("Previous")
|
| 156 |
+
# next_btn = gr.Button("Next")
|
| 157 |
+
# page_number = gr.Number(value=0, label="Page", precision=0)
|
| 158 |
+
# total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")
|
| 159 |
+
|
| 160 |
+
# data_table = gr.Dataframe(
|
| 161 |
+
# value=initial_df,
|
| 162 |
+
# headers=columns,
|
| 163 |
+
# datatype="str",
|
| 164 |
+
# interactive=False,
|
| 165 |
+
# row_count=ROWS_PER_PAGE,
|
| 166 |
+
# )
|
| 167 |
+
|
| 168 |
+
# with gr.Row():
|
| 169 |
+
# col_dropdown = gr.Dropdown(choices=columns, label="Column to Search")
|
| 170 |
+
# search_text = gr.Textbox(label="Search Text")
|
| 171 |
+
# search_dropdown = gr.Dropdown(choices=[], label="Select Value", visible=False)
|
| 172 |
+
# search_btn = gr.Button("Search")
|
| 173 |
+
# reset_btn = gr.Button("Reset")
|
| 174 |
+
|
| 175 |
+
# # Show dropdown only for certain columns
|
| 176 |
+
# def update_search_input(column):
|
| 177 |
+
# if column in DROPDOWN_COLUMNS:
|
| 178 |
+
# return gr.update(choices=unique_values[column], visible=True), gr.update(visible=False)
|
| 179 |
+
# else:
|
| 180 |
+
# return gr.update(visible=False), gr.update(visible=True)
|
| 181 |
+
|
| 182 |
+
# col_dropdown.change(update_search_input, col_dropdown, [search_dropdown, search_text])
|
| 183 |
+
|
| 184 |
+
# # Search function
|
| 185 |
+
# def search_func(page, column, txt, ddl):
|
| 186 |
+
# query = ddl if column in DROPDOWN_COLUMNS else txt
|
| 187 |
+
# page_df, total_pages = get_page(df, page, column, query)
|
| 188 |
+
# return page_df, f"Total Pages: {total_pages}", 0
|
| 189 |
+
|
| 190 |
+
# def next_page(page, column, txt, ddl):
|
| 191 |
+
# page += 1
|
| 192 |
+
# query = ddl if column in DROPDOWN_COLUMNS else txt
|
| 193 |
+
# page_df, total_pages = get_page(df, page, column, query)
|
| 194 |
+
# if page >= total_pages:
|
| 195 |
+
# page = total_pages - 1
|
| 196 |
+
# page_df, total_pages = get_page(df, page, column, query)
|
| 197 |
+
# return page_df, f"Total Pages: {total_pages}", page
|
| 198 |
+
|
| 199 |
+
# def prev_page(page, column, txt, ddl):
|
| 200 |
+
# page = max(0, page - 1)
|
| 201 |
+
# query = ddl if column in DROPDOWN_COLUMNS else txt
|
| 202 |
+
# page_df, total_pages = get_page(df, page, column, query)
|
| 203 |
+
# return page_df, f"Total Pages: {total_pages}", page
|
| 204 |
+
|
| 205 |
+
# def reset_func():
|
| 206 |
+
# page_df, total_pages = get_page(df, 0, None, "")
|
| 207 |
+
# return page_df, f"Total Pages: {total_pages}", 0, "", ""
|
| 208 |
+
|
| 209 |
+
# # Wire events
|
| 210 |
+
# inputs = [page_number, col_dropdown, search_text, search_dropdown]
|
| 211 |
+
# outputs = [data_table, total_pages_display, page_number]
|
| 212 |
+
|
| 213 |
+
# search_btn.click(search_func, inputs, outputs)
|
| 214 |
+
# next_btn.click(next_page, inputs, outputs)
|
| 215 |
+
# prev_btn.click(prev_page, inputs, outputs)
|
| 216 |
+
# reset_btn.click(reset_func, [], outputs + [search_text, search_dropdown])
|
| 217 |
+
|
| 218 |
+
# demo.launch()
|
| 219 |
+
|
| 220 |
import gradio as gr
|
| 221 |
import polars as pl
|
| 222 |
+
from huggingface_hub import HfApi
|
| 223 |
+
import re
|
| 224 |
+
# --- Hugging Face Org ---
|
| 225 |
+
org_name = "hugging-science"
|
| 226 |
+
api = HfApi()
|
| 227 |
|
| 228 |
+
def fetch_members():
|
| 229 |
+
members = api.list_organization_members(org_name)
|
| 230 |
+
return [member.username for member in members]
|
| 231 |
|
| 232 |
+
member_list = fetch_members()
|
| 233 |
|
| 234 |
+
# --- Dataset ---
|
| 235 |
+
COMBINED_PARQUET_PATH = "datasetcards_new.parquet"
|
| 236 |
+
UPDATED_PARQUET_PATH = "datasetcards_new.parquet"
|
| 237 |
+
ROWS_PER_PAGE = 50
|
| 238 |
|
| 239 |
+
# df = pl.read_parquet(COMBINED_PARQUET_PATH)
|
| 240 |
+
df = pl.read_parquet(COMBINED_PARQUET_PATH)
|
| 241 |
+
df = df.with_columns([
|
| 242 |
+
pl.lit("todo").alias("status"),
|
| 243 |
+
pl.lit("").alias("assigned_to")
|
| 244 |
+
]).sort(by=["downloads", "last_modified", "usedStorage"], descending=[True, True, True])
|
| 245 |
+
|
| 246 |
+
if "reason" in df.columns:
|
| 247 |
+
df = df.with_columns([
|
| 248 |
+
pl.Series(
|
| 249 |
+
"reason",
|
| 250 |
+
["short description" if x and "short description" in x.lower() else (x if x is not None else "") for x in df["reason"]]
|
| 251 |
+
)
|
| 252 |
+
])
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
# Add editable columns if missing
|
| 258 |
+
for col in ["assigned_to", "status"]:
|
| 259 |
+
if col not in df.columns:
|
| 260 |
+
default_val = "" if col == "assigned_to" else "todo"
|
| 261 |
+
df = df.with_columns(pl.lit(default_val).alias(col))
|
| 262 |
+
else:
|
| 263 |
+
# Fill nulls with default
|
| 264 |
+
default_val = "" if col == "assigned_to" else "todo"
|
| 265 |
+
df = df.with_columns(pl.col(col).fill_null(default_val))
|
| 266 |
+
|
| 267 |
+
# --- Columns ---
|
| 268 |
+
DROPDOWN_COLUMNS = ["reason", "category", "field", "keyword", "assigned_to", "status"]
|
| 269 |
+
STATUS_OPTIONS = ["todo", "inprogress", "PR submitted", "PR merged"]
|
| 270 |
+
|
| 271 |
+
# Prepare unique values for dropdown search
|
| 272 |
+
unique_values = {col: sorted(df[col].drop_nulls().unique().to_list()) for col in DROPDOWN_COLUMNS}
|
| 273 |
+
unique_values['assigned_to'] = sorted(member_list)
|
| 274 |
+
unique_values['status'] = STATUS_OPTIONS
|
| 275 |
+
|
| 276 |
+
# --- Helper to get page ---
|
| 277 |
+
def get_page(df, page, column=None, query=None):
|
| 278 |
+
filtered_df = df
|
| 279 |
if column and query:
|
| 280 |
+
if column in DROPDOWN_COLUMNS:
|
| 281 |
+
filtered_df = filtered_df.filter(pl.col(column) == query)
|
| 282 |
+
else:
|
| 283 |
+
q = query.lower().strip()
|
| 284 |
+
filtered_df = (
|
| 285 |
+
filtered_df.with_columns([pl.col(column).str.to_lowercase().alias(column)])
|
| 286 |
+
.filter(pl.col(column).str.contains(q, literal=False))
|
| 287 |
+
)
|
| 288 |
start = page * ROWS_PER_PAGE
|
| 289 |
+
page_df = filtered_df[start:start + ROWS_PER_PAGE].to_pandas().fillna("")
|
| 290 |
+
total_rows = filtered_df.height
|
| 291 |
+
total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1 if total_rows > 0 else 1
|
| 292 |
return page_df, total_pages
|
| 293 |
|
| 294 |
+
initial_df, total_pages = get_page(df, 0)
|
|
|
|
| 295 |
columns = list(initial_df.columns)
|
| 296 |
|
| 297 |
with gr.Blocks() as demo:
|
| 298 |
+
gr.Markdown("""
|
| 299 |
+
# Dataset Insight Portal
|
| 300 |
+
|
| 301 |
+
Welcome! This portal helps you explore and manage datasets from our Hugging Face organization.
|
| 302 |
+
|
| 303 |
+
## What is this space for?
|
| 304 |
+
This space provides a table of datasets along with metadata. You can:
|
| 305 |
+
- Browse datasets with pagination.
|
| 306 |
+
- Search datasets by various fields.
|
| 307 |
+
- Assign responsibility for reviewing datasets (`assigned_to`).
|
| 308 |
+
- Track progress using `status`.
|
| 309 |
+
|
| 310 |
+
## Why the table?
|
| 311 |
+
The table gives a structured view of all datasets, making it easy to sort, filter, and update information for each dataset.
|
| 312 |
+
|
| 313 |
+
## What does the table contain?
|
| 314 |
+
Each row represents a dataset. Columns include:
|
| 315 |
+
- **dataset_id**: Unique identifier of the dataset.
|
| 316 |
+
- **dataset_url**: Link to the dataset page on Hugging Face.
|
| 317 |
+
- **downloads**: Number of downloads.
|
| 318 |
+
- **author**: Dataset author.
|
| 319 |
+
- **license**: License type.
|
| 320 |
+
- **tags**: Tags describing the dataset. Obtained from the dataset card.
|
| 321 |
+
- **task_categories**: Categories of tasks the dataset is useful for. Obtained from the dataset card.
|
| 322 |
+
- **last_modified**: Date of last update.
|
| 323 |
+
- **field, keyword**: Metadata columns describing dataset purpose based on heuristics. Use the `field` and `keyword` to filter for science based datasets.
|
| 324 |
+
- **category**: Category of the dataset (`rich` means it is good dataset card. `minimal` means it needs improvement for the reasons below).
|
| 325 |
+
- **reason**: Reason why the dataset is classified as `minimal`. Options: `Failed to load card`, `No metadata and no description`, `No metadata and has description`, `Short description`.
|
| 326 |
+
- **usedStorage**: Storage used by the dataset (bytes).
|
| 327 |
+
- **assigned_to**: Person responsible for the dataset (editable).
|
| 328 |
+
- **status**: Progress status (editable). Options: `todo`, `inprogress`, `PR submitted`, `PR merged`.
|
| 329 |
+
|
| 330 |
+
## How to use search
|
| 331 |
+
- Select a **column** from the dropdown.
|
| 332 |
+
- If the column is textual, type your query in the text box.
|
| 333 |
+
- If the column is a dropdown (like `assigned_to` or `status`), select the value from the dropdown.
|
| 334 |
+
- Click **Search** to filter the table.
|
| 335 |
+
|
| 336 |
+
## How to add or update `assigned_to` and `status`
|
| 337 |
+
1. Search for the **dataset_id** initially.
|
| 338 |
+
2. Then, select the **dataset_id** from the dropdown below the table.
|
| 339 |
+
3. Choose the person responsible in **Assigned To**. If you are a member of the organization, your username should appear in the list. Else refresh and try again.
|
| 340 |
+
4. Select the current status in **Status**.
|
| 341 |
+
5. Click **Save Changes** to update the table and persist the changes.
|
| 342 |
+
6. Use **Refresh All** to reload the table and the latest members list.
|
| 343 |
+
|
| 344 |
+
This portal makes it easy to keep track of dataset reviews, assignments, and progress all in one place.
|
| 345 |
+
""")
|
| 346 |
+
|
| 347 |
+
# --- Pagination controls ---
|
| 348 |
with gr.Row():
|
| 349 |
+
prev_btn = gr.Button("Previous")
|
| 350 |
+
next_btn = gr.Button("Next")
|
| 351 |
page_number = gr.Number(value=0, label="Page", precision=0)
|
| 352 |
total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")
|
| 353 |
|
| 354 |
+
# --- Data table ---
|
| 355 |
data_table = gr.Dataframe(
|
| 356 |
+
value=initial_df,
|
| 357 |
+
headers=columns,
|
| 358 |
+
datatype="str",
|
| 359 |
+
interactive=False,
|
| 360 |
+
row_count=ROWS_PER_PAGE
|
| 361 |
)
|
| 362 |
|
| 363 |
+
# --- Search controls ---
|
| 364 |
with gr.Row():
|
| 365 |
+
col_dropdown = gr.Dropdown(choices=columns, label="Column to Search")
|
| 366 |
+
search_text = gr.Textbox(label="Search Text")
|
| 367 |
+
search_dropdown = gr.Dropdown(choices=[], label="Select Value", visible=False)
|
| 368 |
+
search_btn = gr.Button("Search")
|
| 369 |
+
reset_btn = gr.Button("Reset")
|
| 370 |
+
|
| 371 |
+
# --- Dataset selection & editable fields ---
|
| 372 |
+
selected_dataset_id = gr.Dropdown(label="Select dataset_id", choices=initial_df['dataset_id'].tolist())
|
| 373 |
+
assigned_to_input = gr.Dropdown(choices=member_list, label="Assigned To")
|
| 374 |
+
# status_input = gr.Dropdown(choices=STATUS_OPTIONS, label="Status")
|
| 375 |
+
status_input = gr.Dropdown(choices=STATUS_OPTIONS, label="Status", value="todo")
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
save_btn = gr.Button("Save Changes")
|
| 379 |
+
refresh_btn = gr.Button("Refresh All")
|
| 380 |
+
save_message = gr.Textbox(label="Save Status", interactive=False)
|
| 381 |
+
|
| 382 |
+
# --- Update search input depending on column ---
|
| 383 |
+
def update_search_input(column):
|
| 384 |
+
if column in DROPDOWN_COLUMNS:
|
| 385 |
+
return gr.update(choices=unique_values[column], visible=True), gr.update(visible=False)
|
| 386 |
+
else:
|
| 387 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 388 |
+
|
| 389 |
+
col_dropdown.change(update_search_input, col_dropdown, [search_dropdown, search_text])
|
| 390 |
+
|
| 391 |
+
# --- Prefill editable fields ---
|
| 392 |
+
def prefill_fields(dataset_id):
|
| 393 |
+
if not dataset_id:
|
| 394 |
+
return "", "todo"
|
| 395 |
+
dataset_id = str(dataset_id)
|
| 396 |
+
filtered = [row for row in df.to_dicts() if str(row.get("dataset_id")) == dataset_id]
|
| 397 |
+
if not filtered:
|
| 398 |
+
return "", "todo"
|
| 399 |
+
row = filtered[0]
|
| 400 |
+
return row.get("assigned_to", ""), row.get("status", "todo")
|
| 401 |
+
|
| 402 |
+
selected_dataset_id.change(prefill_fields, selected_dataset_id, [assigned_to_input, status_input])
|
| 403 |
+
|
| 404 |
+
# --- Search function ---
|
| 405 |
+
def search_func(page, column, txt, ddl):
|
| 406 |
+
query = ddl if column in DROPDOWN_COLUMNS else txt
|
| 407 |
+
page_df, total_pages = get_page(df, page, column, query)
|
| 408 |
+
return page_df, f"Total Pages: {total_pages}", 0, gr.update(choices=page_df['dataset_id'].tolist())
|
| 409 |
+
|
| 410 |
+
# --- Pagination functions ---
|
| 411 |
+
def next_page(page, column, txt, ddl):
|
| 412 |
page += 1
|
| 413 |
+
query = ddl if column in DROPDOWN_COLUMNS else txt
|
| 414 |
+
page_df, total_pages = get_page(df, page, column, query)
|
| 415 |
if page >= total_pages:
|
| 416 |
page = total_pages - 1
|
| 417 |
+
page_df, total_pages = get_page(df, page, column, query)
|
| 418 |
+
return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist())
|
| 419 |
|
| 420 |
+
def prev_page(page, column, txt, ddl):
|
| 421 |
+
page = max(0, page - 1)
|
| 422 |
+
query = ddl if column in DROPDOWN_COLUMNS else txt
|
| 423 |
+
page_df, total_pages = get_page(df, page, column, query)
|
| 424 |
+
return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
|
| 426 |
def reset_func():
|
| 427 |
+
page_df, total_pages = get_page(df, 0)
|
| 428 |
+
return page_df, f"Total Pages: {total_pages}", 0, gr.update(choices=page_df['dataset_id'].tolist())
|
| 429 |
+
|
| 430 |
+
# --- Save changes & refresh ---
|
| 431 |
+
def save_changes(dataset_id, assigned_to_val, status_val, page_val, col, txt, ddl):
|
| 432 |
+
global df
|
| 433 |
+
if not dataset_id:
|
| 434 |
+
return gr.update(value="Please select a row first."), None, None, None
|
| 435 |
+
df = df.with_columns([
|
| 436 |
+
pl.when(pl.col("dataset_id") == dataset_id).then(pl.lit(assigned_to_val)).otherwise(pl.col("assigned_to")).alias("assigned_to"),
|
| 437 |
+
pl.when(pl.col("dataset_id") == dataset_id).then(pl.lit(status_val)).otherwise(pl.col("status")).alias("status")
|
| 438 |
+
])
|
| 439 |
+
df.write_parquet(UPDATED_PARQUET_PATH)
|
| 440 |
+
page_df, total_pages = get_page(df, page_val, col, txt if col not in DROPDOWN_COLUMNS else ddl)
|
| 441 |
+
return (
|
| 442 |
+
gr.update(value=f"Saved changes for dataset_id: {dataset_id}"),
|
| 443 |
+
page_df,
|
| 444 |
+
gr.update(choices=page_df['dataset_id'].tolist()),
|
| 445 |
+
f"Total Pages: {total_pages}"
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
# --- Refresh All: table + members ---
|
| 449 |
+
def refresh_all(page, column, txt, ddl):
|
| 450 |
+
global df, member_list, unique_values
|
| 451 |
+
# Refresh members
|
| 452 |
+
member_list = fetch_members()
|
| 453 |
+
unique_values['assigned_to'] = sorted(member_list)
|
| 454 |
+
# Refresh table
|
| 455 |
+
try:
|
| 456 |
+
df = pl.read_parquet(UPDATED_PARQUET_PATH)
|
| 457 |
+
except FileNotFoundError:
|
| 458 |
+
pass
|
| 459 |
+
page_df, total_pages = get_page(df, page, column, txt if column not in DROPDOWN_COLUMNS else ddl)
|
| 460 |
+
return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist()), gr.update(choices=member_list)
|
| 461 |
+
|
| 462 |
+
# --- Wire buttons ---
|
| 463 |
+
inputs_search = [page_number, col_dropdown, search_text, search_dropdown]
|
| 464 |
+
outputs_search = [data_table, total_pages_display, page_number, selected_dataset_id]
|
| 465 |
+
|
| 466 |
+
search_btn.click(search_func, inputs_search, outputs_search)
|
| 467 |
+
next_btn.click(next_page, inputs_search, outputs_search)
|
| 468 |
+
prev_btn.click(prev_page, inputs_search, outputs_search)
|
| 469 |
+
reset_btn.click(reset_func, [], outputs_search)
|
| 470 |
+
save_btn.click(
|
| 471 |
+
save_changes,
|
| 472 |
+
[selected_dataset_id, assigned_to_input, status_input, page_number, col_dropdown, search_text, search_dropdown],
|
| 473 |
+
[save_message, data_table, selected_dataset_id, total_pages_display]
|
| 474 |
+
)
|
| 475 |
+
refresh_btn.click(
|
| 476 |
+
refresh_all,
|
| 477 |
+
inputs=[page_number, col_dropdown, search_text, search_dropdown],
|
| 478 |
+
outputs=[data_table, total_pages_display, page_number, selected_dataset_id, assigned_to_input]
|
| 479 |
+
)
|
| 480 |
|
| 481 |
demo.launch()
|
datasetcards_new.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b0d3770a3024eaf459d5c12d2c4a9d0d5a5043660d0a15c062a387595602eacf
|
| 3 |
+
size 38347730
|