Update app.py
Browse files
app.py
CHANGED
|
@@ -12,14 +12,19 @@ from gradio_client import Client, handle_file
|
|
| 12 |
from huggingface_hub import login
|
| 13 |
from gradio_imageslider import ImageSlider
|
| 14 |
|
|
|
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 17 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
| 18 |
|
|
|
|
| 19 |
def enable_lora(lora_add, basemodel):
|
|
|
|
| 20 |
return basemodel if not lora_add else lora_add
|
| 21 |
|
|
|
|
| 22 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
|
|
|
| 23 |
try:
|
| 24 |
if seed == -1:
|
| 25 |
seed = random.randint(0, MAX_SEED)
|
|
@@ -29,19 +34,23 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
| 29 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
| 30 |
return image, seed
|
| 31 |
except Exception as e:
|
| 32 |
-
print(f"Error
|
| 33 |
return None, None
|
| 34 |
|
|
|
|
| 35 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
|
|
|
| 36 |
try:
|
| 37 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
| 38 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
| 39 |
return result[1]
|
| 40 |
except Exception as e:
|
| 41 |
-
print(f"Error
|
| 42 |
return None
|
| 43 |
|
|
|
|
| 44 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
|
|
|
| 45 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
| 46 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
| 47 |
if image is None:
|
|
@@ -52,16 +61,22 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
| 52 |
|
| 53 |
if process_upscale:
|
| 54 |
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
else:
|
| 59 |
return [image_path, image_path]
|
| 60 |
|
|
|
|
| 61 |
css = """
|
| 62 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
| 63 |
"""
|
| 64 |
|
|
|
|
| 65 |
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
| 66 |
with gr.Column(elem_id="col-container"):
|
| 67 |
with gr.Row():
|
|
|
|
| 12 |
from huggingface_hub import login
|
| 13 |
from gradio_imageslider import ImageSlider
|
| 14 |
|
| 15 |
+
|
| 16 |
MAX_SEED = np.iinfo(np.int32).max
|
| 17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 18 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
| 19 |
|
| 20 |
+
|
| 21 |
def enable_lora(lora_add, basemodel):
|
| 22 |
+
"""Habilita o deshabilita LoRA seg煤n la opci贸n seleccionada"""
|
| 23 |
return basemodel if not lora_add else lora_add
|
| 24 |
|
| 25 |
+
|
| 26 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
| 27 |
+
"""Genera una imagen utilizando el modelo seleccionado"""
|
| 28 |
try:
|
| 29 |
if seed == -1:
|
| 30 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 34 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
| 35 |
return image, seed
|
| 36 |
except Exception as e:
|
| 37 |
+
print(f"Error generando imagen: {e}")
|
| 38 |
return None, None
|
| 39 |
|
| 40 |
+
|
| 41 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
| 42 |
+
"""Escala una imagen utilizando FineGrain"""
|
| 43 |
try:
|
| 44 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
| 45 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
| 46 |
return result[1]
|
| 47 |
except Exception as e:
|
| 48 |
+
print(f"Error escalando imagen: {e}")
|
| 49 |
return None
|
| 50 |
|
| 51 |
+
|
| 52 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
| 53 |
+
"""Funci贸n principal que genera y escala la imagen"""
|
| 54 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
| 55 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
| 56 |
if image is None:
|
|
|
|
| 61 |
|
| 62 |
if process_upscale:
|
| 63 |
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
| 64 |
+
if upscale_image_path is not None:
|
| 65 |
+
upscale_image = Image.open(upscale_image_path)
|
| 66 |
+
upscale_image.save("upscale_image.jpg", format="JPEG")
|
| 67 |
+
return [image_path, "upscale_image.jpg"]
|
| 68 |
+
else:
|
| 69 |
+
print("Error: La ruta de la imagen escalada es None")
|
| 70 |
+
return [image_path, image_path]
|
| 71 |
else:
|
| 72 |
return [image_path, image_path]
|
| 73 |
|
| 74 |
+
|
| 75 |
css = """
|
| 76 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
| 77 |
"""
|
| 78 |
|
| 79 |
+
|
| 80 |
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
| 81 |
with gr.Column(elem_id="col-container"):
|
| 82 |
with gr.Row():
|