Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Load model directly
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import transformers
|
| 4 |
+
|
| 5 |
+
st.title("A Simple Interface for a Language Model")
|
| 6 |
+
|
| 7 |
+
st.subheader("Input Text")
|
| 8 |
+
input_text = st.text_area("Enter your text here", "Type something here...")
|
| 9 |
+
|
| 10 |
+
if st.button("Generate Response"):
|
| 11 |
+
# Initialize tokenizer and model
|
| 12 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("microsoft/phi-2")
|
| 13 |
+
model = transformers.AutoModelForCausalLM.from_pretrained("microsoft/phi-2")
|
| 14 |
+
|
| 15 |
+
# Encode input text
|
| 16 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 17 |
+
|
| 18 |
+
# Generate response
|
| 19 |
+
response = model.generate(**inputs, max_length=100, do_sample=True)
|
| 20 |
+
|
| 21 |
+
# Decode response
|
| 22 |
+
st.subheader("Generated Response")
|
| 23 |
+
st.write(tokenizer.decode(response[0]))
|