File size: 4,255 Bytes
85653bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Kronos Web UI

Web user interface for Kronos financial prediction model, providing intuitive graphical operation interface.

## ✨ Features

- **Multi-format data support**: Supports CSV, Feather and other financial data formats
- **Smart time window**: Fixed 400+120 data point time window slider selection
- **Real model prediction**: Integrated real Kronos model, supports multiple model sizes
- **Prediction quality control**: Adjustable temperature, nucleus sampling, sample count and other parameters
- **Multi-device support**: Supports CPU, CUDA, MPS and other computing devices
- **Comparison analysis**: Detailed comparison between prediction results and actual data
- **K-line chart display**: Professional financial K-line chart display

## πŸš€ Quick Start

### Method 1: Start with Python script
```bash

cd webui

python run.py

```

### Method 2: Start with Shell script
```bash

cd webui

chmod +x start.sh

./start.sh

```

### Method 3: Start Flask application directly
```bash

cd webui

python app.py

```

After successful startup, visit http://localhost:7070

## πŸ“‹ Usage Steps

1. **Load data**: Select financial data file from data directory
2. **Load model**: Select Kronos model and computing device
3. **Set parameters**: Adjust prediction quality parameters
4. **Select time window**: Use slider to select 400+120 data point time range
5. **Start prediction**: Click prediction button to generate results
6. **View results**: View prediction results in charts and tables

## πŸ”§ Prediction Quality Parameters

### Temperature (T)
- **Range**: 0.1 - 2.0
- **Effect**: Controls prediction randomness
- **Recommendation**: 1.2-1.5 for better prediction quality

### Nucleus Sampling (top_p)

- **Range**: 0.1 - 1.0

- **Effect**: Controls prediction diversity

- **Recommendation**: 0.95-1.0 to consider more possibilities



### Sample Count

- **Range**: 1 - 5

- **Effect**: Generate multiple prediction samples

- **Recommendation**: 2-3 samples to improve quality



## πŸ“Š Supported Data Formats



### Required Columns

- `open`: Opening price

- `high`: Highest price

- `low`: Lowest price

- `close`: Closing price



### Optional Columns

- `volume`: Trading volume

- `amount`: Trading amount (not used for prediction)

- `timestamps`/`timestamp`/`date`: Timestamp



## πŸ€– Model Support



- **Kronos-mini**: 4.1M parameters, lightweight fast prediction

- **Kronos-small**: 24.7M parameters, balanced performance and speed

- **Kronos-base**: 102.3M parameters, high quality prediction



## πŸ–₯️ GPU Acceleration Support



- **CPU**: General computing, best compatibility

- **CUDA**: NVIDIA GPU acceleration, best performance

- **MPS**: Apple Silicon GPU acceleration, recommended for Mac users



## ⚠️ Notes



- `amount` column is not used for prediction, only for display

- Time window is fixed at 400+120=520 data points

- Ensure data file contains sufficient historical data

- First model loading may require download, please be patient



## πŸ” Comparison Analysis



The system automatically provides comparison analysis between prediction results and actual data, including:

- Price difference statistics

- Error analysis

- Prediction quality assessment



## πŸ› οΈ Technical Architecture



- **Backend**: Flask + Python

- **Frontend**: HTML + CSS + JavaScript

- **Charts**: Plotly.js

- **Data processing**: Pandas + NumPy

- **Model**: Hugging Face Transformers



## πŸ“ Troubleshooting



### Common Issues

1. **Port occupied**: Modify port number in app.py

2. **Missing dependencies**: Run `pip install -r requirements.txt`

3. **Model loading failed**: Check network connection and model ID

4. **Data format error**: Ensure data column names and format are correct



### Log Viewing

Detailed runtime information will be displayed in the console at startup, including model status and error messages.



## πŸ“„ License



This project follows the license terms of the original Kronos project.



## 🀝 Contributing



Welcome to submit Issues and Pull Requests to improve this Web UI!



## πŸ“ž Support



If you have questions, please check:

1. Project documentation

2. GitHub Issues

3. Console error messages