Spaces:
Sleeping
Sleeping
| import io | |
| import json | |
| import re | |
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| import pandas as pd | |
| from datasets import load_dataset | |
| from PIL import Image | |
| from transformers import AutoTokenizer | |
| tokenizers = { | |
| "bert": "google-bert/bert-base-uncased", | |
| "bge-en": "BAAI/bge-base-en-v1.5", | |
| "bge-zh": "BAAI/bge-base-zh-v1.5", | |
| "blenderbot": "facebook/blenderbot-3B", | |
| "bloom": "bigscience/bloom-560m", | |
| "bloomz": "bigscience/bloomz-7b1", | |
| "chatglm3": "THUDM/chatglm3-6b", | |
| "falcon": "tiiuae/falcon-7b", | |
| "gemma": "fxmarty/tiny-random-GemmaForCausalLM", | |
| "gpt-neox": "EleutherAI/gpt-neox-20b", | |
| "llama": "TinyLlama/TinyLlama-1.1B-Chat-v0.6", | |
| "magicoder": "ise-uiuc/Magicoder-S-DS-6.7B", | |
| "mistral": "echarlaix/tiny-random-mistral", | |
| "mpt": "mosaicml/mpt-7b", | |
| "opt": "facebook/opt-2.7b", | |
| "phi-2": "microsoft/phi-2", | |
| "pythia": "EleutherAI/pythia-1.4b-deduped", | |
| "qwen": "Qwen/Qwen1.5-7B-Chat", | |
| "redpajama": "togethercomputer/RedPajama-INCITE-Chat-3B-v1", | |
| "roberta": "FacebookAI/roberta-base", | |
| "starcoder": "bigcode/starcoder2-7b", | |
| "t5": "google-t5/t5-base", | |
| "vicuna": "lmsys/vicuna-7b-v1.5", | |
| "zephyr": "HuggingFaceH4/zephyr-7b-beta", | |
| } | |
| tokenizers = list(tokenizers.values()) | |
| def plot_histogram(data): | |
| plt.hist(data) | |
| plt.title("Histogram of number of tokens per dataset item") | |
| buf = io.BytesIO() | |
| plt.savefig(buf, format="png") | |
| plt.close() | |
| buf.seek(0) | |
| im = Image.open(buf) | |
| return im | |
| def count(model_id, dataset_id, config, split, column, add_special_tokens=True): | |
| tokencounter = [] | |
| wordcounter = [] | |
| charcounter = [] | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
| if config == "": | |
| config is None | |
| dataset = load_dataset(dataset_id, config, split=split, trust_remote_code=True) | |
| pattern = r"[a-zA-Z]+" | |
| for item in dataset: | |
| tokens = tokenizer(item[column], add_special_tokens=add_special_tokens)["input_ids"] | |
| tokencounter.append(len(tokens)) | |
| charcounter.append(len(item[column])) | |
| # not 100% accurate but good enough | |
| words = re.findall(pattern, item[column]) | |
| wordcounter.append(len(words)) | |
| percentiles = [0.25, 0.5, 0.75, 0.9, 0.95, 0.99] | |
| df = pd.DataFrame(tokencounter).describe(percentiles=percentiles).T | |
| df.insert(0, "type", "tokens") | |
| dfc = pd.DataFrame(charcounter).describe(percentiles=percentiles).T | |
| dfc.insert(0, "type", "chars") | |
| dfw = pd.DataFrame(wordcounter).describe(percentiles=percentiles).T | |
| dfw.insert(0, "type", "words") | |
| df.loc[-1] = dfw.values[0] | |
| df.index = df.index + 1 # shifting index | |
| df.loc[-1] = dfc.values[0] | |
| df = df.round(1) | |
| df.drop("count", axis=1, inplace=True) | |
| return plot_histogram(tokencounter), df | |
| demo = gr.Interface( | |
| fn=count, | |
| title="Dataset token counts and distribution", | |
| inputs=[ | |
| gr.Dropdown(label="Tokenizer", choices=tokenizers, allow_custom_value=True), | |
| gr.Textbox(label="Dataset"), | |
| gr.Textbox(label="Config"), | |
| gr.Textbox(label="Split"), | |
| gr.Textbox(label="Column"), | |
| gr.Checkbox(label="Add special tokens", value=True), | |
| ], | |
| outputs=[ | |
| gr.Image(), | |
| gr.Dataframe(label="Token, word and character counts per dataset item"), | |
| ], | |
| examples=[ | |
| ["tiiuae/falcon-7b", "gsarti/flores_101", "eng", "dev", "sentence"], | |
| ["tiiuae/falcon-7b", "Muennighoff/flores200", "eng_Latn", "dev", "sentence"], | |
| ["tiiuae/falcon-7b", "hails/mmlu_no_train", "elementary_mathematics", "test", "question"], | |
| ["tiiuae/falcon-7b", "gsm8k", "main", "test", "question"], | |
| ["tiiuae/falcon-7b", "locuslab/TOFU", "world_facts", "train", "question"], | |
| ["tiiuae/falcon-7b", "imdb", "", "test", "text"], | |
| ["tiiuae/falcon-7b", "wikitext", "wikitext-2-v1", "validation", "text"], | |
| ["tiiuae/falcon-7b", "zeroshot/twitter-financial-news-sentiment", "", "validation", "text"], | |
| ["BAAI/bge-base-en-v1.5", "PolyAI/banking77", "", "test", "text"], | |
| ["BAAI/bge-base-en-v1.5", "mteb/amazon_massive_intent", "en", "test", "text"], | |
| ["BAAI/bge-base-en-v1.5", "mteb/sts16-sts", "", "test", "sentence1"], | |
| ], | |
| cache_examples=True, | |
| ) | |
| demo.launch() | |