Spaces:
Running
Running
Upload networks.py
Browse files- networks.py +613 -0
networks.py
ADDED
|
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Shengkui Zhao, Zexu Pan)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
import soundfile as sf
|
| 18 |
+
import os
|
| 19 |
+
import subprocess
|
| 20 |
+
import librosa
|
| 21 |
+
from tqdm import tqdm
|
| 22 |
+
import numpy as np
|
| 23 |
+
from pydub import AudioSegment
|
| 24 |
+
from utils.decode import decode_one_audio
|
| 25 |
+
from dataloader.dataloader import DataReader
|
| 26 |
+
|
| 27 |
+
MAX_WAV_VALUE = 32768.0
|
| 28 |
+
|
| 29 |
+
class SpeechModel:
|
| 30 |
+
"""
|
| 31 |
+
The SpeechModel class is a base class designed to handle speech processing tasks,
|
| 32 |
+
such as loading, processing, and decoding audio data. It initializes the computational
|
| 33 |
+
device (CPU or GPU) and holds model-related attributes. The class is flexible and intended
|
| 34 |
+
to be extended by specific speech models for tasks like speech enhancement, speech separation,
|
| 35 |
+
target speaker extraction etc.
|
| 36 |
+
|
| 37 |
+
Attributes:
|
| 38 |
+
- args: Argument parser object that contains configuration settings.
|
| 39 |
+
- device: The device (CPU or GPU) on which the model will run.
|
| 40 |
+
- model: The actual model used for speech processing tasks (to be loaded by subclasses).
|
| 41 |
+
- name: A placeholder for the model's name.
|
| 42 |
+
- data: A dictionary to store any additional data related to the model, such as audio input.
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
def __init__(self, args):
|
| 46 |
+
"""
|
| 47 |
+
Initializes the SpeechModel class by determining the computation device
|
| 48 |
+
(GPU or CPU) to be used for running the model, based on system availability.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
- args: Argument parser object containing settings like whether to use CUDA (GPU) or not.
|
| 52 |
+
"""
|
| 53 |
+
# Check if a GPU is available
|
| 54 |
+
if torch.cuda.is_available():
|
| 55 |
+
# Find the GPU with the most free memory using a custom method
|
| 56 |
+
free_gpu_id = self.get_free_gpu()
|
| 57 |
+
if free_gpu_id is not None:
|
| 58 |
+
args.use_cuda = 1
|
| 59 |
+
torch.cuda.set_device(free_gpu_id)
|
| 60 |
+
self.device = torch.device('cuda')
|
| 61 |
+
else:
|
| 62 |
+
# If no GPU is detected, use the CPU
|
| 63 |
+
#print("No GPU found. Using CPU.")
|
| 64 |
+
args.use_cuda = 0
|
| 65 |
+
self.device = torch.device('cpu')
|
| 66 |
+
else:
|
| 67 |
+
# If no GPU is detected, use the CPU
|
| 68 |
+
args.use_cuda = 0
|
| 69 |
+
self.device = torch.device('cpu')
|
| 70 |
+
|
| 71 |
+
self.args = args
|
| 72 |
+
self.model = None
|
| 73 |
+
self.name = None
|
| 74 |
+
self.data = {}
|
| 75 |
+
self.print = False
|
| 76 |
+
|
| 77 |
+
def get_free_gpu(self):
|
| 78 |
+
"""
|
| 79 |
+
Identifies the GPU with the most free memory using 'nvidia-smi' and returns its index.
|
| 80 |
+
|
| 81 |
+
This function queries the available GPUs on the system and determines which one has
|
| 82 |
+
the highest amount of free memory. It uses the `nvidia-smi` command-line tool to gather
|
| 83 |
+
GPU memory usage data. If successful, it returns the index of the GPU with the most free memory.
|
| 84 |
+
If the query fails or an error occurs, it returns None.
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
int: Index of the GPU with the most free memory, or None if no GPU is found or an error occurs.
|
| 88 |
+
"""
|
| 89 |
+
try:
|
| 90 |
+
# Run nvidia-smi to query GPU memory usage and free memory
|
| 91 |
+
result = subprocess.run(['nvidia-smi', '--query-gpu=memory.used,memory.free', '--format=csv,nounits,noheader'], stdout=subprocess.PIPE)
|
| 92 |
+
gpu_info = result.stdout.decode('utf-8').strip().split('\n')
|
| 93 |
+
|
| 94 |
+
free_gpu = None
|
| 95 |
+
max_free_memory = 0
|
| 96 |
+
for i, info in enumerate(gpu_info):
|
| 97 |
+
used, free = map(int, info.split(','))
|
| 98 |
+
if free > max_free_memory:
|
| 99 |
+
max_free_memory = free
|
| 100 |
+
free_gpu = i
|
| 101 |
+
return free_gpu
|
| 102 |
+
except Exception as e:
|
| 103 |
+
print(f"Error finding free GPU: {e}")
|
| 104 |
+
return None
|
| 105 |
+
|
| 106 |
+
def download_model(self, model_name):
|
| 107 |
+
checkpoint_dir = self.args.checkpoint_dir
|
| 108 |
+
from huggingface_hub import snapshot_download
|
| 109 |
+
if not os.path.exists(checkpoint_dir):
|
| 110 |
+
os.makedirs(checkpoint_dir)
|
| 111 |
+
print(f'downloading checkpoint for {model_name}')
|
| 112 |
+
try:
|
| 113 |
+
snapshot_download(repo_id=f'alibabasglab/{model_name}', local_dir=checkpoint_dir)
|
| 114 |
+
return True
|
| 115 |
+
except:
|
| 116 |
+
return False
|
| 117 |
+
|
| 118 |
+
def load_model(self):
|
| 119 |
+
"""
|
| 120 |
+
Loads a pre-trained model checkpoints from a specified directory. It checks for
|
| 121 |
+
the best model ('last_best_checkpoint') in the checkpoint directory. If a model is
|
| 122 |
+
found, it loads the model state into the current model instance.
|
| 123 |
+
|
| 124 |
+
If no checkpoint is found, it will try to download the model from huggingface.
|
| 125 |
+
If the downloading fails, it prints a warning message.
|
| 126 |
+
|
| 127 |
+
Steps:
|
| 128 |
+
- Search for the best model checkpoint or the most recent one.
|
| 129 |
+
- Load the model's state dictionary from the checkpoint file.
|
| 130 |
+
|
| 131 |
+
Raises:
|
| 132 |
+
- FileNotFoundError: If neither 'last_best_checkpoint' nor 'last_checkpoint' files are found.
|
| 133 |
+
"""
|
| 134 |
+
# Define paths for the best model and the last checkpoint
|
| 135 |
+
best_name = os.path.join(self.args.checkpoint_dir, 'last_best_checkpoint')
|
| 136 |
+
# Check if the last best checkpoint exists
|
| 137 |
+
if not os.path.isfile(best_name):
|
| 138 |
+
if not self.download_model(self.name):
|
| 139 |
+
# If downloading is unsuccessful
|
| 140 |
+
print(f'Warning: Downloading model {self.name} is not successful. Please try again or manually download from https://huggingface.co/alibabasglab/{self.name}/tree/main !')
|
| 141 |
+
return
|
| 142 |
+
|
| 143 |
+
if isinstance(self.model, nn.ModuleList):
|
| 144 |
+
with open(best_name, 'r') as f:
|
| 145 |
+
model_name = f.readline().strip()
|
| 146 |
+
checkpoint_path = os.path.join(self.args.checkpoint_dir, model_name)
|
| 147 |
+
self._load_model(self.model[0], checkpoint_path, model_key='mossformer')
|
| 148 |
+
model_name = f.readline().strip()
|
| 149 |
+
checkpoint_path = os.path.join(self.args.checkpoint_dir, model_name)
|
| 150 |
+
self._load_model(self.model[1], checkpoint_path, model_key='generator')
|
| 151 |
+
else:
|
| 152 |
+
# Read the model's checkpoint name from the file
|
| 153 |
+
with open(best_name, 'r') as f:
|
| 154 |
+
model_name = f.readline().strip()
|
| 155 |
+
# Form the full path to the model's checkpoint
|
| 156 |
+
checkpoint_path = os.path.join(self.args.checkpoint_dir, model_name)
|
| 157 |
+
self._load_model(self.model, checkpoint_path, model_key='model')
|
| 158 |
+
|
| 159 |
+
def _load_model(self, model, checkpoint_path, model_key=None):
|
| 160 |
+
# Load the checkpoint file into memory (map_location ensures compatibility with different devices)
|
| 161 |
+
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
|
| 162 |
+
# Load the model's state dictionary (weights and biases) into the current model
|
| 163 |
+
if model_key in checkpoint:
|
| 164 |
+
pretrained_model = checkpoint[model_key]
|
| 165 |
+
else:
|
| 166 |
+
pretrained_model = checkpoint
|
| 167 |
+
state = model.state_dict()
|
| 168 |
+
for key in state.keys():
|
| 169 |
+
if key in pretrained_model and state[key].shape == pretrained_model[key].shape:
|
| 170 |
+
state[key] = pretrained_model[key]
|
| 171 |
+
elif key.replace('module.', '') in pretrained_model and state[key].shape == pretrained_model[key.replace('module.', '')].shape:
|
| 172 |
+
state[key] = pretrained_model[key.replace('module.', '')]
|
| 173 |
+
elif 'module.'+key in pretrained_model and state[key].shape == pretrained_model['module.'+key].shape:
|
| 174 |
+
state[key] = pretrained_model['module.'+key]
|
| 175 |
+
elif self.print: print(f'{key} not loaded')
|
| 176 |
+
model.load_state_dict(state)
|
| 177 |
+
|
| 178 |
+
def decode(self):
|
| 179 |
+
"""
|
| 180 |
+
Decodes the input audio data using the loaded model and ensures the output matches the original audio length.
|
| 181 |
+
|
| 182 |
+
This method processes the audio through a speech model (e.g., for enhancement, separation, etc.),
|
| 183 |
+
and truncates the resulting audio to match the original input's length. The method supports multiple speakers
|
| 184 |
+
if the model handles multi-speaker audio.
|
| 185 |
+
|
| 186 |
+
Returns:
|
| 187 |
+
output_audio: The decoded audio after processing, truncated to the input audio length.
|
| 188 |
+
If multi-speaker audio is processed, a list of truncated audio outputs per speaker is returned.
|
| 189 |
+
"""
|
| 190 |
+
# Decode the audio using the loaded model on the given device (e.g., CPU or GPU)
|
| 191 |
+
output_audios = []
|
| 192 |
+
for i in range(len(self.data['audio'])):
|
| 193 |
+
output_audio = decode_one_audio(self.model, self.device, self.data['audio'][i], self.args)
|
| 194 |
+
# Ensure the decoded output matches the length of the input audio
|
| 195 |
+
if isinstance(output_audio, list):
|
| 196 |
+
# If multi-speaker audio (a list of outputs), truncate each speaker's audio to input length
|
| 197 |
+
for spk in range(self.args.num_spks):
|
| 198 |
+
output_audio[spk] = output_audio[spk][:self.data['audio_len']]
|
| 199 |
+
else:
|
| 200 |
+
# Single output, truncate to input audio length
|
| 201 |
+
output_audio = output_audio[:self.data['audio_len']]
|
| 202 |
+
output_audios.append(output_audio)
|
| 203 |
+
|
| 204 |
+
if isinstance(output_audios[0], list):
|
| 205 |
+
output_audios_np = []
|
| 206 |
+
for spk in range(self.args.num_spks):
|
| 207 |
+
output_audio_buf = []
|
| 208 |
+
for i in range(len(output_audios)):
|
| 209 |
+
output_audio_buf.append(output_audios[i][spk])
|
| 210 |
+
#output_audio_buf = np.vstack((output_audio_buf, output_audios[i][spk])).T
|
| 211 |
+
output_audios_np.append(np.array(output_audio_buf))
|
| 212 |
+
else:
|
| 213 |
+
output_audios_np = np.array(output_audios)
|
| 214 |
+
return output_audios_np
|
| 215 |
+
|
| 216 |
+
def process(self, input_path, online_write=False, output_path=None):
|
| 217 |
+
"""
|
| 218 |
+
Load and process audio files from the specified input path. Optionally,
|
| 219 |
+
write the output audio files to the specified output directory.
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
input_path (str): Path to the input audio files or folder.
|
| 223 |
+
online_write (bool): Whether to write the processed audio to disk in real-time.
|
| 224 |
+
output_path (str): Optional path for writing output files. If None, output
|
| 225 |
+
will be stored in self.result.
|
| 226 |
+
|
| 227 |
+
Returns:
|
| 228 |
+
dict or ndarray: Processed audio results either as a dictionary or as a single array,
|
| 229 |
+
depending on the number of audio files processed.
|
| 230 |
+
Returns None if online_write is enabled.
|
| 231 |
+
"""
|
| 232 |
+
|
| 233 |
+
self.result = {}
|
| 234 |
+
self.args.input_path = input_path
|
| 235 |
+
data_reader = DataReader(self.args) # Initialize a data reader to load the audio files
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
# Check if online writing is enabled
|
| 239 |
+
if online_write:
|
| 240 |
+
output_wave_dir = self.args.output_dir # Set the default output directory
|
| 241 |
+
if isinstance(output_path, str): # If a specific output path is provided, use it
|
| 242 |
+
output_wave_dir = os.path.join(output_path, self.name)
|
| 243 |
+
# Create the output directory if it does not exist
|
| 244 |
+
if not os.path.isdir(output_wave_dir):
|
| 245 |
+
os.makedirs(output_wave_dir)
|
| 246 |
+
|
| 247 |
+
num_samples = len(data_reader) # Get the total number of samples to process
|
| 248 |
+
print(f'Running {self.name} ...') # Display the model being used
|
| 249 |
+
|
| 250 |
+
if self.args.task == 'target_speaker_extraction':
|
| 251 |
+
from utils.video_process import process_tse
|
| 252 |
+
assert online_write == True
|
| 253 |
+
process_tse(self.args, self.model, self.device, data_reader, output_wave_dir)
|
| 254 |
+
else:
|
| 255 |
+
# Disable gradient calculation for better efficiency during inference
|
| 256 |
+
with torch.no_grad():
|
| 257 |
+
for idx in tqdm(range(num_samples)): # Loop over all audio samples
|
| 258 |
+
self.data = {}
|
| 259 |
+
# Read the audio, waveform ID, and audio length from the data reader
|
| 260 |
+
input_audio, wav_id, input_len, scalars, audio_info = data_reader[idx]
|
| 261 |
+
# Store the input audio and metadata in self.data
|
| 262 |
+
self.data['audio'] = input_audio
|
| 263 |
+
self.data['id'] = wav_id
|
| 264 |
+
self.data['audio_len'] = input_len
|
| 265 |
+
self.data.update(audio_info)
|
| 266 |
+
|
| 267 |
+
# Perform the audio decoding/processing
|
| 268 |
+
output_audios = self.decode()
|
| 269 |
+
|
| 270 |
+
# Perform audio renormalization
|
| 271 |
+
if not isinstance(output_audios, list):
|
| 272 |
+
if len(scalars) > 1:
|
| 273 |
+
for i in range(len(scalars)):
|
| 274 |
+
output_audios[:,i] = output_audios[:,i] * scalars[i]
|
| 275 |
+
else:
|
| 276 |
+
output_audios = output_audios * scalars[0]
|
| 277 |
+
|
| 278 |
+
if online_write:
|
| 279 |
+
# If online writing is enabled, save the output audio to files
|
| 280 |
+
if isinstance(output_audios, list):
|
| 281 |
+
# In case of multi-speaker output, save each speaker's output separately
|
| 282 |
+
for spk in range(self.args.num_spks):
|
| 283 |
+
output_file = os.path.join(output_wave_dir, wav_id.replace('.'+self.data['ext'], f'_s{spk+1}.'+self.data['ext']))
|
| 284 |
+
self.write_audio(output_file, key=None, spk=spk, audio=output_audios)
|
| 285 |
+
else:
|
| 286 |
+
# Single-speaker or standard output
|
| 287 |
+
output_file = os.path.join(output_wave_dir, wav_id)
|
| 288 |
+
self.write_audio(output_file, key=None, spk=None, audio=output_audios)
|
| 289 |
+
else:
|
| 290 |
+
# If not writing to disk, store the output in the result dictionary
|
| 291 |
+
self.result[wav_id] = output_audios
|
| 292 |
+
|
| 293 |
+
# Return the processed results if not writing to disk
|
| 294 |
+
if not online_write:
|
| 295 |
+
if len(self.result) == 1:
|
| 296 |
+
# If there is only one result, return it directly
|
| 297 |
+
return next(iter(self.result.values()))
|
| 298 |
+
else:
|
| 299 |
+
# Otherwise, return the entire result dictionary
|
| 300 |
+
return self.result
|
| 301 |
+
|
| 302 |
+
def write_audio(self, output_path, key=None, spk=None, audio=None):
|
| 303 |
+
"""
|
| 304 |
+
This function writes an audio signal to an output file, applying necessary transformations
|
| 305 |
+
such as resampling, channel handling, and format conversion based on the provided parameters
|
| 306 |
+
and the instance's internal settings.
|
| 307 |
+
|
| 308 |
+
Args:
|
| 309 |
+
output_path (str): The file path where the audio will be saved.
|
| 310 |
+
key (str, optional): The key used to retrieve audio from the internal result dictionary
|
| 311 |
+
if audio is not provided.
|
| 312 |
+
spk (str, optional): A specific speaker identifier, used to extract a particular speaker's
|
| 313 |
+
audio from a multi-speaker dataset or result.
|
| 314 |
+
audio (numpy.ndarray, optional): A numpy array containing the audio data to be written.
|
| 315 |
+
If provided, key and spk are ignored.
|
| 316 |
+
"""
|
| 317 |
+
|
| 318 |
+
if audio is not None:
|
| 319 |
+
if spk is not None:
|
| 320 |
+
result_ = audio[spk]
|
| 321 |
+
else:
|
| 322 |
+
result_ = audio
|
| 323 |
+
else:
|
| 324 |
+
if spk is not None:
|
| 325 |
+
result_ = self.result[key][spk]
|
| 326 |
+
else:
|
| 327 |
+
result_ = self.result[key]
|
| 328 |
+
|
| 329 |
+
if self.data['sample_rate'] != self.args.sampling_rate:
|
| 330 |
+
if self.data['channels'] == 2:
|
| 331 |
+
left_channel = librosa.resample(result_[0,:], orig_sr=self.args.sampling_rate, target_sr=self.data['sample_rate'])
|
| 332 |
+
right_channel = librosa.resample(result_[1,:], orig_sr=self.args.sampling_rate, target_sr=self.data['sample_rate'])
|
| 333 |
+
result = np.vstack((left_channel, right_channel)).T
|
| 334 |
+
else:
|
| 335 |
+
result = librosa.resample(result_[0,:], orig_sr=self.args.sampling_rate, target_sr=self.data['sample_rate'])
|
| 336 |
+
else:
|
| 337 |
+
if self.data['channels'] == 2:
|
| 338 |
+
left_channel = result_[0,:]
|
| 339 |
+
right_channel = result_[1,:]
|
| 340 |
+
result = np.vstack((left_channel, right_channel)).T
|
| 341 |
+
else:
|
| 342 |
+
result = result_[0,:]
|
| 343 |
+
|
| 344 |
+
if self.data['sample_width'] == 4: ##32 bit float
|
| 345 |
+
MAX_WAV_VALUE = 2147483648.0
|
| 346 |
+
np_type = np.int32
|
| 347 |
+
elif self.data['sample_width'] == 2: ##16 bit int
|
| 348 |
+
MAX_WAV_VALUE = 32768.0
|
| 349 |
+
np_type = np.int16
|
| 350 |
+
else:
|
| 351 |
+
self.data['sample_width'] = 2 ##16 bit int
|
| 352 |
+
MAX_WAV_VALUE = 32768.0
|
| 353 |
+
np_type = np.int16
|
| 354 |
+
|
| 355 |
+
result = result * MAX_WAV_VALUE
|
| 356 |
+
result = result.astype(np_type)
|
| 357 |
+
audio_segment = AudioSegment(
|
| 358 |
+
result.tobytes(), # Raw audio data as bytes
|
| 359 |
+
frame_rate=self.data['sample_rate'], # Sample rate
|
| 360 |
+
sample_width=self.data['sample_width'], # No. bytes per sample
|
| 361 |
+
channels=self.data['channels'] # No. channels
|
| 362 |
+
)
|
| 363 |
+
audio_format = 'ipod' if self.data['ext'] in ['m4a', 'aac'] else self.data['ext']
|
| 364 |
+
audio_segment.export(output_path, format=audio_format)
|
| 365 |
+
|
| 366 |
+
def write(self, output_path, add_subdir=False, use_key=False):
|
| 367 |
+
"""
|
| 368 |
+
Write the processed audio results to the specified output path.
|
| 369 |
+
|
| 370 |
+
Args:
|
| 371 |
+
output_path (str): The directory or file path where processed audio will be saved. If not
|
| 372 |
+
provided, defaults to self.args.output_dir.
|
| 373 |
+
add_subdir (bool): If True, appends the model name as a subdirectory to the output path.
|
| 374 |
+
use_key (bool): If True, uses the result dictionary's keys (audio file IDs) for filenames.
|
| 375 |
+
|
| 376 |
+
Returns:
|
| 377 |
+
None: Outputs are written to disk, no data is returned.
|
| 378 |
+
"""
|
| 379 |
+
|
| 380 |
+
# Ensure the output path is a string. If not provided, use the default output directory
|
| 381 |
+
if not isinstance(output_path, str):
|
| 382 |
+
output_path = self.args.output_dir
|
| 383 |
+
|
| 384 |
+
# If add_subdir is enabled, create a subdirectory for the model name
|
| 385 |
+
if add_subdir:
|
| 386 |
+
if os.path.isfile(output_path):
|
| 387 |
+
print(f'File exists: {output_path}, remove it and try again!')
|
| 388 |
+
return
|
| 389 |
+
output_path = os.path.join(output_path, self.name)
|
| 390 |
+
if not os.path.isdir(output_path):
|
| 391 |
+
os.makedirs(output_path)
|
| 392 |
+
|
| 393 |
+
# Ensure proper directory setup when using keys for filenames
|
| 394 |
+
if use_key and not os.path.isdir(output_path):
|
| 395 |
+
if os.path.exists(output_path):
|
| 396 |
+
print(f'File exists: {output_path}, remove it and try again!')
|
| 397 |
+
return
|
| 398 |
+
os.makedirs(output_path)
|
| 399 |
+
# If not using keys and output path is a directory, check for conflicts
|
| 400 |
+
if not use_key and os.path.isdir(output_path):
|
| 401 |
+
print(f'Directory exists: {output_path}, remove it and try again!')
|
| 402 |
+
return
|
| 403 |
+
|
| 404 |
+
# Iterate over the results dictionary to write the processed audio to disk
|
| 405 |
+
for key in self.result:
|
| 406 |
+
if use_key:
|
| 407 |
+
# If using keys, format filenames based on the result dictionary's keys (audio IDs)
|
| 408 |
+
if isinstance(self.result[key], list): # For multi-speaker outputs
|
| 409 |
+
for spk in range(self.args.num_spks):
|
| 410 |
+
output_file = os.path.join(output_path, key.replace('.'+self.data['ext'], f'_s{spk+1}.'+self.data['ext']))
|
| 411 |
+
self.write_audio(output_file, key, spk)
|
| 412 |
+
else:
|
| 413 |
+
output_file = os.path.join(output_path, key)
|
| 414 |
+
self.write_audio(output_path, key)
|
| 415 |
+
else:
|
| 416 |
+
# If not using keys, write audio to the specified output path directly
|
| 417 |
+
if isinstance(self.result[key], list): # For multi-speaker outputs
|
| 418 |
+
for spk in range(self.args.num_spks):
|
| 419 |
+
output_file = output_path.replace('.'+self.data['ext'], f'_s{spk+1}.'+self.data['ext'])
|
| 420 |
+
self.write_audio(output_file, key, spk)
|
| 421 |
+
else:
|
| 422 |
+
self.write_audio(output_path, key)
|
| 423 |
+
|
| 424 |
+
# The model classes for specific sub-tasks
|
| 425 |
+
|
| 426 |
+
class CLS_FRCRN_SE_16K(SpeechModel):
|
| 427 |
+
"""
|
| 428 |
+
A subclass of SpeechModel that implements a speech enhancement model using
|
| 429 |
+
the FRCRN architecture for 16 kHz speech enhancement.
|
| 430 |
+
|
| 431 |
+
Args:
|
| 432 |
+
args (Namespace): The argument parser containing model configurations and paths.
|
| 433 |
+
"""
|
| 434 |
+
|
| 435 |
+
def __init__(self, args):
|
| 436 |
+
# Initialize the parent SpeechModel class
|
| 437 |
+
super(CLS_FRCRN_SE_16K, self).__init__(args)
|
| 438 |
+
|
| 439 |
+
# Import the FRCRN speech enhancement model for 16 kHz
|
| 440 |
+
from models.frcrn_se.frcrn import FRCRN_SE_16K
|
| 441 |
+
|
| 442 |
+
# Initialize the model
|
| 443 |
+
self.model = FRCRN_SE_16K(args).model
|
| 444 |
+
self.name = 'FRCRN_SE_16K'
|
| 445 |
+
|
| 446 |
+
# Load pre-trained model checkpoint
|
| 447 |
+
self.load_model()
|
| 448 |
+
|
| 449 |
+
# Move model to the appropriate device (GPU/CPU)
|
| 450 |
+
if args.use_cuda == 1:
|
| 451 |
+
self.model.to(self.device)
|
| 452 |
+
|
| 453 |
+
# Set the model to evaluation mode (no gradient calculation)
|
| 454 |
+
self.model.eval()
|
| 455 |
+
|
| 456 |
+
class CLS_MossFormer2_SE_48K(SpeechModel):
|
| 457 |
+
"""
|
| 458 |
+
A subclass of SpeechModel that implements the MossFormer2 architecture for
|
| 459 |
+
48 kHz speech enhancement.
|
| 460 |
+
|
| 461 |
+
Args:
|
| 462 |
+
args (Namespace): The argument parser containing model configurations and paths.
|
| 463 |
+
"""
|
| 464 |
+
|
| 465 |
+
def __init__(self, args):
|
| 466 |
+
# Initialize the parent SpeechModel class
|
| 467 |
+
super(CLS_MossFormer2_SE_48K, self).__init__(args)
|
| 468 |
+
|
| 469 |
+
# Import the MossFormer2 speech enhancement model for 48 kHz
|
| 470 |
+
from models.mossformer2_se.mossformer2_se_wrapper import MossFormer2_SE_48K
|
| 471 |
+
|
| 472 |
+
# Initialize the model
|
| 473 |
+
self.model = MossFormer2_SE_48K(args).model
|
| 474 |
+
self.name = 'MossFormer2_SE_48K'
|
| 475 |
+
|
| 476 |
+
# Load pre-trained model checkpoint
|
| 477 |
+
self.load_model()
|
| 478 |
+
|
| 479 |
+
# Move model to the appropriate device (GPU/CPU)
|
| 480 |
+
if args.use_cuda == 1:
|
| 481 |
+
self.model.to(self.device)
|
| 482 |
+
|
| 483 |
+
# Set the model to evaluation mode (no gradient calculation)
|
| 484 |
+
self.model.eval()
|
| 485 |
+
|
| 486 |
+
class CLS_MossFormer2_SR_48K(SpeechModel):
|
| 487 |
+
"""
|
| 488 |
+
A subclass of SpeechModel that implements the MossFormer2 architecture for
|
| 489 |
+
48 kHz speech super-resolution.
|
| 490 |
+
|
| 491 |
+
Args:
|
| 492 |
+
args (Namespace): The argument parser containing model configurations and paths.
|
| 493 |
+
"""
|
| 494 |
+
|
| 495 |
+
def __init__(self, args):
|
| 496 |
+
# Initialize the parent SpeechModel class
|
| 497 |
+
super(CLS_MossFormer2_SR_48K, self).__init__(args)
|
| 498 |
+
|
| 499 |
+
# Import the MossFormer2 speech enhancement model for 48 kHz
|
| 500 |
+
from models.mossformer2_sr.mossformer2_sr_wrapper import MossFormer2_SR_48K
|
| 501 |
+
|
| 502 |
+
# Initialize the model
|
| 503 |
+
self.model = nn.ModuleList()
|
| 504 |
+
self.model.append(MossFormer2_SR_48K(args).model_m)
|
| 505 |
+
self.model.append(MossFormer2_SR_48K(args).model_g)
|
| 506 |
+
self.name = 'MossFormer2_SR_48K'
|
| 507 |
+
|
| 508 |
+
# Load pre-trained model checkpoint
|
| 509 |
+
self.load_model()
|
| 510 |
+
|
| 511 |
+
# Move model to the appropriate device (GPU/CPU)
|
| 512 |
+
if args.use_cuda == 1:
|
| 513 |
+
for model in self.model:
|
| 514 |
+
model.to(self.device)
|
| 515 |
+
|
| 516 |
+
# Set the model to evaluation mode (no gradient calculation)
|
| 517 |
+
for model in self.model:
|
| 518 |
+
model.eval()
|
| 519 |
+
self.model[1].remove_weight_norm()
|
| 520 |
+
|
| 521 |
+
class CLS_MossFormerGAN_SE_16K(SpeechModel):
|
| 522 |
+
"""
|
| 523 |
+
A subclass of SpeechModel that implements the MossFormerGAN architecture for
|
| 524 |
+
16 kHz speech enhancement, utilizing GAN-based speech processing.
|
| 525 |
+
|
| 526 |
+
Args:
|
| 527 |
+
args (Namespace): The argument parser containing model configurations and paths.
|
| 528 |
+
"""
|
| 529 |
+
|
| 530 |
+
def __init__(self, args):
|
| 531 |
+
# Initialize the parent SpeechModel class
|
| 532 |
+
super(CLS_MossFormerGAN_SE_16K, self).__init__(args)
|
| 533 |
+
|
| 534 |
+
# Import the MossFormerGAN speech enhancement model for 16 kHz
|
| 535 |
+
from models.mossformer_gan_se.generator import MossFormerGAN_SE_16K
|
| 536 |
+
|
| 537 |
+
# Initialize the model
|
| 538 |
+
self.model = MossFormerGAN_SE_16K(args).model
|
| 539 |
+
self.name = 'MossFormerGAN_SE_16K'
|
| 540 |
+
|
| 541 |
+
# Load pre-trained model checkpoint
|
| 542 |
+
self.load_model()
|
| 543 |
+
|
| 544 |
+
# Move model to the appropriate device (GPU/CPU)
|
| 545 |
+
if args.use_cuda == 1:
|
| 546 |
+
self.model.to(self.device)
|
| 547 |
+
|
| 548 |
+
# Set the model to evaluation mode (no gradient calculation)
|
| 549 |
+
self.model.eval()
|
| 550 |
+
|
| 551 |
+
class CLS_MossFormer2_SS_16K(SpeechModel):
|
| 552 |
+
"""
|
| 553 |
+
A subclass of SpeechModel that implements the MossFormer2 architecture for
|
| 554 |
+
16 kHz speech separation.
|
| 555 |
+
|
| 556 |
+
Args:
|
| 557 |
+
args (Namespace): The argument parser containing model configurations and paths.
|
| 558 |
+
"""
|
| 559 |
+
|
| 560 |
+
def __init__(self, args):
|
| 561 |
+
# Initialize the parent SpeechModel class
|
| 562 |
+
super(CLS_MossFormer2_SS_16K, self).__init__(args)
|
| 563 |
+
|
| 564 |
+
# Import the MossFormer2 speech separation model for 16 kHz
|
| 565 |
+
from models.mossformer2_ss.mossformer2 import MossFormer2_SS_16K
|
| 566 |
+
|
| 567 |
+
# Initialize the model
|
| 568 |
+
self.model = MossFormer2_SS_16K(args).model
|
| 569 |
+
self.name = 'MossFormer2_SS_16K'
|
| 570 |
+
|
| 571 |
+
# Load pre-trained model checkpoint
|
| 572 |
+
self.load_model()
|
| 573 |
+
|
| 574 |
+
# Move model to the appropriate device (GPU/CPU)
|
| 575 |
+
if args.use_cuda == 1:
|
| 576 |
+
self.model.to(self.device)
|
| 577 |
+
|
| 578 |
+
# Set the model to evaluation mode (no gradient calculation)
|
| 579 |
+
self.model.eval()
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
class CLS_AV_MossFormer2_TSE_16K(SpeechModel):
|
| 583 |
+
"""
|
| 584 |
+
A subclass of SpeechModel that implements an audio-visual (AV) model using
|
| 585 |
+
the AV-MossFormer2 architecture for target speaker extraction (TSE) at 16 kHz.
|
| 586 |
+
This model leverages both audio and visual cues to perform speaker extraction.
|
| 587 |
+
|
| 588 |
+
Args:
|
| 589 |
+
args (Namespace): The argument parser containing model configurations and paths.
|
| 590 |
+
"""
|
| 591 |
+
|
| 592 |
+
def __init__(self, args):
|
| 593 |
+
# Initialize the parent SpeechModel class
|
| 594 |
+
super(CLS_AV_MossFormer2_TSE_16K, self).__init__(args)
|
| 595 |
+
|
| 596 |
+
# Import the AV-MossFormer2 model for 16 kHz target speech enhancement
|
| 597 |
+
from models.av_mossformer2_tse.av_mossformer2 import AV_MossFormer2_TSE_16K
|
| 598 |
+
|
| 599 |
+
# Initialize the model
|
| 600 |
+
self.model = AV_MossFormer2_TSE_16K(args).model
|
| 601 |
+
self.name = 'AV_MossFormer2_TSE_16K'
|
| 602 |
+
|
| 603 |
+
# Load pre-trained model checkpoint
|
| 604 |
+
self.load_model()
|
| 605 |
+
|
| 606 |
+
# Move model to the appropriate device (GPU/CPU)
|
| 607 |
+
if args.use_cuda == 1:
|
| 608 |
+
self.model.to(self.device)
|
| 609 |
+
|
| 610 |
+
# Set the model to evaluation mode (no gradient calculation)
|
| 611 |
+
self.model.eval()
|
| 612 |
+
|
| 613 |
+
|