Spaces:
Runtime error
Runtime error
| from vietocr.model.backbone.cnn import CNN | |
| from vietocr.model.seqmodel.transformer import LanguageTransformer | |
| from vietocr.model.seqmodel.seq2seq import Seq2Seq | |
| from vietocr.model.seqmodel.convseq2seq import ConvSeq2Seq | |
| from torch import nn | |
| class VietOCR(nn.Module): | |
| def __init__(self, vocab_size, | |
| backbone, | |
| cnn_args, | |
| transformer_args, seq_modeling='transformer'): | |
| super(VietOCR, self).__init__() | |
| self.cnn = CNN(backbone, **cnn_args) | |
| self.seq_modeling = seq_modeling | |
| if seq_modeling == 'transformer': | |
| self.transformer = LanguageTransformer(vocab_size, **transformer_args) | |
| elif seq_modeling == 'seq2seq': | |
| self.transformer = Seq2Seq(vocab_size, **transformer_args) | |
| elif seq_modeling == 'convseq2seq': | |
| self.transformer = ConvSeq2Seq(vocab_size, **transformer_args) | |
| else: | |
| raise('Not Support Seq Model') | |
| def forward(self, img, tgt_input, tgt_key_padding_mask): | |
| """ | |
| Shape: | |
| - img: (N, C, H, W) | |
| - tgt_input: (T, N) | |
| - tgt_key_padding_mask: (N, T) | |
| - output: b t v | |
| """ | |
| src = self.cnn(img) | |
| if self.seq_modeling == 'transformer': | |
| outputs = self.transformer(src, tgt_input, tgt_key_padding_mask=tgt_key_padding_mask) | |
| elif self.seq_modeling == 'seq2seq': | |
| outputs = self.transformer(src, tgt_input) | |
| elif self.seq_modeling == 'convseq2seq': | |
| outputs = self.transformer(src, tgt_input) | |
| return outputs | |