Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	init
Browse files- app.py +149 -0
 - requirements.txt +3 -0
 
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,149 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import random
         
     | 
| 2 | 
         
            +
            import re
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            import gradio as gr
         
     | 
| 5 | 
         
            +
            import torch
         
     | 
| 6 | 
         
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer
         
     | 
| 7 | 
         
            +
            from transformers import AutoModelForSeq2SeqLM
         
     | 
| 8 | 
         
            +
            from transformers import AutoProcessor
         
     | 
| 9 | 
         
            +
            from transformers import pipeline, set_seed
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 12 | 
         
            +
            big_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
         
     | 
| 13 | 
         
            +
            big_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            text_pipe = pipeline('text-generation', model='succinctly/text2image-prompt-generator')
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            zh2en_model = AutoModelForSeq2SeqLM.from_pretrained('Helsinki-NLP/opus-mt-zh-en').eval()
         
     | 
| 18 | 
         
            +
            zh2en_tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-zh-en')
         
     | 
| 19 | 
         
            +
            en2zh_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh").eval()
         
     | 
| 20 | 
         
            +
            en2zh_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            def load_prompter():
         
     | 
| 24 | 
         
            +
                prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
         
     | 
| 25 | 
         
            +
                tokenizer = AutoTokenizer.from_pretrained("gpt2")
         
     | 
| 26 | 
         
            +
                tokenizer.pad_token = tokenizer.eos_token
         
     | 
| 27 | 
         
            +
                tokenizer.padding_side = "left"
         
     | 
| 28 | 
         
            +
                return prompter_model, tokenizer
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            prompter_model, prompter_tokenizer = load_prompter()
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            def generate_prompter(plain_text, max_new_tokens=75, num_beams=8, num_return_sequences=8, length_penalty=-1.0):
         
     | 
| 35 | 
         
            +
                input_ids = prompter_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids
         
     | 
| 36 | 
         
            +
                eos_id = prompter_tokenizer.eos_token_id
         
     | 
| 37 | 
         
            +
                outputs = prompter_model.generate(
         
     | 
| 38 | 
         
            +
                    input_ids,
         
     | 
| 39 | 
         
            +
                    do_sample=False,
         
     | 
| 40 | 
         
            +
                    max_new_tokens=max_new_tokens,
         
     | 
| 41 | 
         
            +
                    num_beams=num_beams,
         
     | 
| 42 | 
         
            +
                    num_return_sequences=num_return_sequences,
         
     | 
| 43 | 
         
            +
                    eos_token_id=eos_id,
         
     | 
| 44 | 
         
            +
                    pad_token_id=eos_id,
         
     | 
| 45 | 
         
            +
                    length_penalty=length_penalty
         
     | 
| 46 | 
         
            +
                )
         
     | 
| 47 | 
         
            +
                output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
         
     | 
| 48 | 
         
            +
                result = []
         
     | 
| 49 | 
         
            +
                for output_text in output_texts:
         
     | 
| 50 | 
         
            +
                    result.append(output_text.replace(plain_text + " Rephrase:", "").strip())
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                return "\n".join(result)
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            def translate_zh2en(text):
         
     | 
| 56 | 
         
            +
                with torch.no_grad():
         
     | 
| 57 | 
         
            +
                    encoded = zh2en_tokenizer([text], return_tensors='pt')
         
     | 
| 58 | 
         
            +
                    sequences = zh2en_model.generate(**encoded)
         
     | 
| 59 | 
         
            +
                    return zh2en_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            def translate_en2zh(text):
         
     | 
| 63 | 
         
            +
                with torch.no_grad():
         
     | 
| 64 | 
         
            +
                    encoded = en2zh_tokenizer([text], return_tensors="pt")
         
     | 
| 65 | 
         
            +
                    sequences = en2zh_model.generate(**encoded)
         
     | 
| 66 | 
         
            +
                    return en2zh_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            def text_generate(text_in_english):
         
     | 
| 70 | 
         
            +
                seed = random.randint(100, 1000000)
         
     | 
| 71 | 
         
            +
                set_seed(seed)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                result = ""
         
     | 
| 74 | 
         
            +
                for _ in range(6):
         
     | 
| 75 | 
         
            +
                    sequences = text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8)
         
     | 
| 76 | 
         
            +
                    list = []
         
     | 
| 77 | 
         
            +
                    for sequence in sequences:
         
     | 
| 78 | 
         
            +
                        line = sequence['generated_text'].strip()
         
     | 
| 79 | 
         
            +
                        if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith(
         
     | 
| 80 | 
         
            +
                                (':', '-', '—')) is False:
         
     | 
| 81 | 
         
            +
                            list.append(line)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    result = "\n".join(list)
         
     | 
| 84 | 
         
            +
                    result = re.sub('[^ ]+\.[^ ]+', '', result)
         
     | 
| 85 | 
         
            +
                    result = result.replace('<', '').replace('>', '')
         
     | 
| 86 | 
         
            +
                    if result != '':
         
     | 
| 87 | 
         
            +
                        break
         
     | 
| 88 | 
         
            +
                return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
            def get_prompt_from_image(input_image):
         
     | 
| 92 | 
         
            +
                image = input_image.convert('RGB')
         
     | 
| 93 | 
         
            +
                pixel_values = big_processor(images=image, return_tensors="pt").to(device).pixel_values
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                generated_ids = big_model.to(device).generate(pixel_values=pixel_values, max_length=50)
         
     | 
| 96 | 
         
            +
                generated_caption = big_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
         
     | 
| 97 | 
         
            +
                print(generated_caption)
         
     | 
| 98 | 
         
            +
                return generated_caption
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            with gr.Blocks() as block:
         
     | 
| 102 | 
         
            +
                with gr.Column():
         
     | 
| 103 | 
         
            +
                    with gr.Tab('文本生成'):
         
     | 
| 104 | 
         
            +
                        with gr.Row():
         
     | 
| 105 | 
         
            +
                            input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
         
     | 
| 106 | 
         
            +
                            translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                        with gr.Accordion('SD优化参数设置', open=False):
         
     | 
| 109 | 
         
            +
                            max_new_tokens = gr.Slider(1, 255, 75, label='max_new_tokens', step=1)
         
     | 
| 110 | 
         
            +
                            nub_beams = gr.Slider(1, 30, 8, label='num_beams', step=1)
         
     | 
| 111 | 
         
            +
                            num_return_sequences = gr.Slider(1, 30, 8, label='num_return_sequences', step=1)
         
     | 
| 112 | 
         
            +
                            length_penalty = gr.Slider(-1.0, 1.0, -1.0, label='length_penalty')
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                        generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt')
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                        output = gr.Textbox(lines=6, label='瞎编的 Prompt')
         
     | 
| 117 | 
         
            +
                        output_zh = gr.Textbox(lines=6, label='瞎编的 Prompt(zh)')
         
     | 
| 118 | 
         
            +
                        with gr.Row():
         
     | 
| 119 | 
         
            +
                            translate_btn = gr.Button('翻译')
         
     | 
| 120 | 
         
            +
                            generate_prompter_btn = gr.Button('SD优化')
         
     | 
| 121 | 
         
            +
                            gpt_btn = gr.Button('瞎编')
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                    with gr.Tab('从图片中生成'):
         
     | 
| 124 | 
         
            +
                        with gr.Row():
         
     | 
| 125 | 
         
            +
                            input_image = gr.Image(type='pil')
         
     | 
| 126 | 
         
            +
                        img_btn = gr.Button('提交')
         
     | 
| 127 | 
         
            +
                        output_image = gr.Textbox(lines=6, label='生成的 Prompt')
         
     | 
| 128 | 
         
            +
                translate_btn.click(
         
     | 
| 129 | 
         
            +
                    fn=translate_zh2en,
         
     | 
| 130 | 
         
            +
                    inputs=input_text,
         
     | 
| 131 | 
         
            +
                    outputs=translate_output
         
     | 
| 132 | 
         
            +
                )
         
     | 
| 133 | 
         
            +
                generate_prompter_btn.click(
         
     | 
| 134 | 
         
            +
                    fn=generate_prompter,
         
     | 
| 135 | 
         
            +
                    inputs=[translate_output, max_new_tokens, nub_beams, num_return_sequences, length_penalty],
         
     | 
| 136 | 
         
            +
                    outputs=generate_prompter_output
         
     | 
| 137 | 
         
            +
                )
         
     | 
| 138 | 
         
            +
                gpt_btn.click(
         
     | 
| 139 | 
         
            +
                    fn=text_generate,
         
     | 
| 140 | 
         
            +
                    inputs=translate_output,
         
     | 
| 141 | 
         
            +
                    outputs=[output, output_zh]
         
     | 
| 142 | 
         
            +
                )
         
     | 
| 143 | 
         
            +
                img_btn.click(
         
     | 
| 144 | 
         
            +
                    fn=get_prompt_from_image,
         
     | 
| 145 | 
         
            +
                    inputs=input_image,
         
     | 
| 146 | 
         
            +
                    outputs=output_image
         
     | 
| 147 | 
         
            +
                )
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
            block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')
         
     | 
    	
        requirements.txt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            transformers==4.27.4
         
     | 
| 2 | 
         
            +
            #sentencepiece
         
     | 
| 3 | 
         
            +
            #sacremoses
         
     |