File size: 6,992 Bytes
30edd6a
 
 
 
 
 
 
6c80c52
 
 
 
30edd6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# ============================================================
# DELCAP β€” Medical Image Captioning (Hugging Face Space)
# ============================================================

# ------------------------------
# Install dependencies (if needed)
# ------------------------------
#!pip install torch torchvision --quiet
#!pip install huggingface_hub --quiet
#!pip install nltk --quiet
#!pip install gradio --quiet

import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms

import json
import nltk
from PIL import Image
from collections import Counter
from huggingface_hub import hf_hub_download

import gradio as gr

# Ensure punkt tokenizer is available
nltk.download("punkt")

# ============================================================
# Configuration
# ============================================================
class Config:
    IMG_SIZE = 224
    EMBED_SIZE = 256
    HIDDEN_SIZE = 512
    NUM_LSTM_LAYERS = 1
    DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    MAX_CAPTION_LENGTH = 50

config = Config()

# ============================================================
# Tokenization
# ============================================================
def tokenize_caption(text):
    return nltk.word_tokenize(text.lower())

# ============================================================
# Vocabulary
# ============================================================
class Vocabulary:
    def __init__(self, freq_threshold=1):
        self.itos = {
            0: "<pad>",
            1: "<unk>",
            2: "<sos>",
            3: "<eos>"
        }
        self.stoi = {v: k for k, v in self.itos.items()}
        self.freq_threshold = freq_threshold
        self.vocab_size = len(self.itos)

    def __len__(self):
        return self.vocab_size

    @classmethod
    def from_json(cls, json_data):
        vocab_obj = cls()
        vocab_obj.stoi = json_data['stoi']
        vocab_obj.itos = {int(k): v for k, v in json_data['itos'].items()}
        vocab_obj.vocab_size = len(vocab_obj.stoi)
        return vocab_obj

    def idx_to_word(self, idx):
        return self.itos.get(idx, "<unk>")

# ============================================================
# Encoder
# ============================================================
class EncoderCNN(nn.Module):
    def __init__(self, embed_size):
        super().__init__()
        densenet = models.densenet121(weights=models.DenseNet121_Weights.DEFAULT)
        self.densenet_features = densenet.features

        for param in self.densenet_features.parameters():
            param.requires_grad_(False)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.embed = nn.Linear(1024, embed_size)

    def forward(self, images):
        features = self.densenet_features(images)
        features = self.avgpool(features)
        features = features.view(features.size(0), -1)
        features = self.embed(features)
        return features

# ============================================================
# Decoder
# ============================================================
class DecoderRNN(nn.Module):
    def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1):
        super().__init__()
        self.embed = nn.Embedding(vocab_size, embed_size)
        self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
        self.linear = nn.Linear(hidden_size, vocab_size)
        self.dropout = nn.Dropout(0.5)
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.feature_to_hidden_state = nn.Linear(embed_size, hidden_size)

    def sample(self, features, max_len=20, vocab=None):
        self.eval()
        with torch.no_grad():
            sampled_ids = []
            initial_hidden = self.feature_to_hidden_state(features)
            h = initial_hidden.unsqueeze(0).repeat(self.num_layers, 1, 1)
            c = initial_hidden.unsqueeze(0).repeat(self.num_layers, 1, 1)
            hidden = (h, c)

            start_token = torch.tensor([vocab.stoi["<sos>"]], device=features.device)
            inputs = self.embed(start_token).unsqueeze(1)

            for _ in range(max_len):
                output, hidden = self.lstm(inputs, hidden)
                logits = self.linear(self.dropout(output.squeeze(1)))
                _, predicted = logits.max(1)
                sampled_ids.append(predicted)

                if predicted.item() == vocab.stoi["<eos>"]:
                    break

                inputs = self.embed(predicted).unsqueeze(1)

            return torch.stack(sampled_ids)

# ============================================================
# Load Vocabulary & Models
# ============================================================
vocab_path = hf_hub_download("hackergeek/delcap", "vocab.json")
with open(vocab_path, "r") as f:
    vocab_data = json.load(f)
vocab = Vocabulary.from_json(vocab_data)

encoder_path = hf_hub_download("hackergeek/delcap", "encoder.pth")
decoder_path = hf_hub_download("hackergeek/delcap", "decoder.pth")

encoder = EncoderCNN(config.EMBED_SIZE).to(config.DEVICE)
encoder.load_state_dict(torch.load(encoder_path, map_location=config.DEVICE))

decoder_state = torch.load(decoder_path, map_location=config.DEVICE)
vocab_size = decoder_state["linear.weight"].shape[0]

decoder = DecoderRNN(config.EMBED_SIZE, config.HIDDEN_SIZE, vocab_size).to(config.DEVICE)
decoder.load_state_dict(decoder_state)

encoder.eval()
decoder.eval()

# ============================================================
# Image Preprocessing
# ============================================================
transform = transforms.Compose([
    transforms.Resize((config.IMG_SIZE, config.IMG_SIZE)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225]),
])

# ============================================================
# Caption Generation
# ============================================================
def generate_caption(image: Image.Image):
    image_tensor = transform(image).unsqueeze(0).to(config.DEVICE)
    with torch.no_grad():
        features = encoder(image_tensor)
        sampled_ids = decoder.sample(features, max_len=config.MAX_CAPTION_LENGTH, vocab=vocab)

    caption = []
    for token in sampled_ids.cpu().numpy():
        word = vocab.idx_to_word(token.item())
        if word in ["<sos>", "<pad>"]:
            continue
        if word == "<eos>":
            break
        caption.append(word)
    return " ".join(caption)

# ============================================================
# Gradio Interface
# ============================================================
iface = gr.Interface(
    fn=generate_caption,
    inputs=gr.Image(type="pil"),
    outputs=gr.Textbox(label="Generated Caption"),
    title="DELCAP β€” Medical Image Captioning",
    description="Upload a medical image and get a generated caption."
)

iface.launch()