Prot2Text-V2 / app.py
habdine's picture
Upload 7 files
ea465a5 verified
raw
history blame
12.8 kB
from threading import Thread
from typing import Iterator, List, Tuple
import gradio as gr
from gradio.themes import Soft
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
TEAM_LOGO_URL = "http://nlp.polytechnique.fr/static/images/logo_dascim.png"
PROTEIN_VISUAL_URL = "https://cas-bridge.xethub.hf.co/xet-bridge-us/68e677c594d3f20bbeecf13c/7cff6ae021d7c518ee4e2fcb70490516ad9e4999ec75c6a5dd164cc6ca64ae30?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20251023%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20251023T094659Z&X-Amz-Expires=3600&X-Amz-Signature=6a7598d77a46df971e88e1f378bc5e06794a3893f31319a6ab3431e4323d755c&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=66448b4fecac3bc79b26304f&response-content-disposition=inline%3B+filename*%3DUTF-8%27%27model.png%3B+filename%3D%22model.png%22%3B&response-content-type=image%2Fpng&x-id=GetObject&Expires=1761216419&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc2MTIxNjQxOX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82OGU2NzdjNTk0ZDNmMjBiYmVlY2YxM2MvN2NmZjZhZTAyMWQ3YzUxOGVlNGUyZmNiNzA0OTA1MTZhZDllNDk5OWVjNzVjNmE1ZGQxNjRjYzZjYTY0YWUzMCoifV19&Signature=YjrX1ZF%7EX1qw-m2nWOY8AxdSXwbrsidvlTZ5YWXZx3UPv0my0u68lWcpWIpIxzkGeWTtWPvlCfMcmnpmmwS2wHexorhgq9c7%7E3Ghw20evO0EMPvHBwP4vWYmXW8nHBqqqbw8Qy1pojDm9TvXV19O4-fCFxPi1aQ5FOTC2Kmn9gKxW%7EAN7vkWnfhU8QcCf18139hMbUvh9YoJ%7EesOWXoCFWgAbyz%7Eroajt5e3oM9b-IsU%7E2-UzMZ4%7EMA2MSOFmg487bhZDbr2IMD15-8O0jzWu3qyO3T1H06S-9kTdI%7EC6AYtXUY8YtSWKw%7EBzhARjXK6%7EuZ3c3kE1V7%7EdnLl1YM-2w__&Key-Pair-Id=K2L8F4GPSG1IFC"
PROTEIN_HERO = f"""
<div class="visual-card hero-card">
<img src="{PROTEIN_VISUAL_URL}" alt="Protein rendering" class="protein-visual">
</div>
"""
DESCRIPTION = f"""\
### Prot2Text-V2 Demo
{PROTEIN_HERO}
Prot2Text-V2 treats a protein sequence as if it were another language and translates it into English. Supply a raw amino acid sequence and the model returns a clear, human-readable paragraph describing what the protein does.
The paper describing Prot2Text-V2 has been accepted to the NeurIPS 2025 main conference and pairs fast experimentation with explainability-minded outputs.
- **Input**: protein sequence using IUPAC single-letter amino acid codes (20 canonical amino acids).
- **Output**: polished descriptions of predicted function, localization cues, and structural hints.
- **Why it matters**: accelerate protein characterization, lab annotations, or downstream hypothesis building.
**Model architecture at a glance**
- Protein language model encoder: facebook/esm2_t36_3B_UR50D.
- Modality adapter: lightweight bridge aligning protein embeddings with the language model.
- Natural language decoder: meta-llama/Llama-3.1-8B-Instruct for articulate descriptions.
**Resources**
- [Paper (NeurIPS 2025)](https://arxiv.org/abs/2505.11194)
- [Code repository](https://github.com/ColinFX/Prot2Text-V2)
- [Training data](https://huggingface.co/datasets/habdine/Prot2Text-Data)
"""
EXAMPLE_SEQUENCES = [
["AEQAERYEEMVEFMEKL"],
[
"MAVVLPAVVEELLSEMAAAVQESARIPDEYLLSLKFLFGSSATQALDLVDRQSITLISSPSGRRVYQVLGSSSKTYTCLASCHYCSCPAFAFSVLRKSDSILCKHLLAVYLSQVMRTCQQLSVSDKQLTDILLMEKKQEA"
],
[
"MCYSANGNTFLIVDNTQKRIPEEKKPDFVRENVGDLDGVIFVELVDGKYFMDYYNRDGSMAAFCGNGARAFSQYLIDRGWIKEKEFTFLSRAGEIKVIVDDSIWVRMPGVSEKKEMKVDGYEGYFVVVGVPHFVMEVKGIDELDVEKLGRDLRYKTGANVDFYEVLPDRLKVRTYERGVERETKACGTGVTSVFVVYRDKTGAKEVKIQVPGGTLFLKEENGEIFLRGDVKRCSEE"
],
[
"MTQEERFEQRIAQETAIEPQDWMPDAYRKTLIRQIGQHAHSEIVGMLPEGNWITRAPTLRRKAILLAKVQDEAGHGLYLYSAAETLGCAREDIYQKMLDGRMKYSSIFNYPTLSWADIGVIGWLVDGAAIVNQVALCRTSYGPYARAMVKICKEESFHQRQGFEACMALAQGSEAQKQMLQDAINRFWWPALMMFGPNDDNSPNSARSLTWKIKRFTNDELRQRFVDNTVPQVEMLGMTVPDPDLHFDTESGHYRFGEIDWQEFNEVINGRGICNQERLDAKRKAWEEGTWVREAALAHAQKQHARKVA"
],
[
"MTTRMIILNGGSSAGKSGIVRCLQSVLPEPWLAFGVDSLIEAMPLKMQSAEGGIEFDADGGVSIGPEFRALEGAWAEGVVAMARAGARIIIDDVFLGGAAAQERWRSFVGDLDVLWVGVRCDGAVAEGRETARGDRVAGMAAKQAYVVHEGVEYDVEVDTTHKESIECAWAIAAHVVP"
],
]
MAX_MAX_NEW_TOKENS = 256
DEFAULT_MAX_NEW_TOKENS = 100
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
system_message = (
"You are a scientific assistant specialized in protein function "
"predictions. Given the sequence embeddings and other information "
"of a protein, describe its function clearly and concisely in "
"professional language. "
)
placeholder = '<|reserved_special_token_1|>'
esm_tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t36_3B_UR50D")
llama_tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path="meta-llama/Llama-3.1-8B-Instruct",
pad_token='<|reserved_special_token_0|>'
)
model = AutoModelForCausalLM.from_pretrained('xiao-fei/Prot2Text-V2-11B-Instruct-hf',
trust_remote_code=True,
torch_dtype=torch.bfloat16,).to(device)
model.eval()
@spaces.GPU(duration=90)
def stream_response(
message: str,
max_new_tokens: int = 1024,
do_sample: bool = False,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
streamer = TextIteratorStreamer(llama_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
user_message = "Sequence embeddings: " + placeholder * (len(message)+2)
tokenized_prompt = llama_tokenizer.apply_chat_template(
[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
tokenized_sequence = esm_tokenizer(
message,
return_tensors="pt"
)
model.eval()
generate_kwargs = dict(
inputs=tokenized_prompt["input_ids"].to(model.device),
attention_mask=tokenized_prompt["attention_mask"].to(model.device),
protein_input_ids=tokenized_sequence["input_ids"].to(model.device),
protein_attention_mask=tokenized_sequence["attention_mask"].to(model.device),
eos_token_id=128009,
pad_token_id=128002,
return_dict_in_generate=False,
num_beams=1,
# device=device,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
ChatHistory = List[Tuple[str, str]]
def handle_submit(
message: str,
history: ChatHistory,
max_new_tokens: int,
do_sample: bool,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float,
):
history = list(history or [])
message = message.strip()
if not message:
return
conversation = history.copy()
conversation.append((message, ""))
for partial_response in stream_response(
message=message,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
):
conversation[-1] = (message, partial_response)
snapshot = conversation.copy()
yield snapshot, snapshot, gr.update(value="")
def clear_conversation():
empty_history: ChatHistory = []
return empty_history, empty_history, gr.update(value="")
theme = Soft(
primary_hue="slate",
secondary_hue="stone",
neutral_hue="gray",
)
with gr.Blocks(theme=theme, css_paths="style.css", fill_height=True) as demo:
with gr.Row(equal_height=True):
with gr.Column(scale=5, min_width=320):
gr.HTML(
f"""
<div class="brand-header center">
<a href="https://www.lix.polytechnique.fr/dascim/" target="_blank" rel="noopener">
<img src="{TEAM_LOGO_URL}" alt="DASCIM team logo" class="team-logo">
</a>
</div>
"""
)
gr.Markdown(DESCRIPTION)
with gr.Column(scale=7, min_width=400, elem_classes="interaction-column"):
history_state = gr.State([])
chatbot = gr.Chatbot(
label="Generated Function",
height=350,
show_copy_button=True,
)
with gr.Group(elem_classes="input-card"):
sequence_input = gr.Textbox(
placeholder="Paste your amino acid sequence here (e.g. MAVVLPAVVEELLSEMAAAVQESA...)",
label="Protein sequence",
lines=1,
max_lines=1,
autofocus=True,
)
with gr.Row(elem_classes="button-row"):
submit_button = gr.Button("Predict function", variant="primary", elem_classes="primary-btn")
stop_button = gr.Button("Stop generation", variant="stop", elem_classes="stop-btn")
gr.Examples(
examples=EXAMPLE_SEQUENCES,
inputs=sequence_input,
label="Sample sequences",
cache_examples=False,
run_on_click=False,
)
with gr.Accordion("Generation controls", open=False):
max_new_tokens_slider = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
do_sample_checkbox = gr.Checkbox(label="Enable sampling", value=False)
temperature_slider = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
)
top_p_slider = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
)
top_k_slider = gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
)
repetition_penalty_slider = gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.0,
)
enter_event = sequence_input.submit(
handle_submit,
inputs=[
sequence_input,
history_state,
max_new_tokens_slider,
do_sample_checkbox,
temperature_slider,
top_p_slider,
top_k_slider,
repetition_penalty_slider,
],
outputs=[chatbot, history_state, sequence_input],
queue=True,
)
submit_event = submit_button.click(
handle_submit,
inputs=[
sequence_input,
history_state,
max_new_tokens_slider,
do_sample_checkbox,
temperature_slider,
top_p_slider,
top_k_slider,
repetition_penalty_slider,
],
outputs=[chatbot, history_state, sequence_input],
queue=True,
)
stop_button.click(
None,
inputs=None,
outputs=None,
cancels=[submit_event, enter_event],
)
with gr.Accordion("Model & usage notes", open=False):
gr.Markdown(
"- **Model stack**: Facebook ESM2 encoder + Llama 3.1 8B instruction-tuned decoder.\n"
"- **Token budget**: the generator truncates after the configured `Max new tokens`.\n"
"- **Attribution**: Outputs are predictions; validate experimentally before publication.\n"
)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
if __name__ == "__main__":
demo.queue(max_size=20).launch()