Spaces:
Runtime error
Runtime error
try to inport inside gpu
Browse files
app.py
CHANGED
|
@@ -8,101 +8,101 @@ import gradio as gr
|
|
| 8 |
from PIL import Image
|
| 9 |
import os
|
| 10 |
|
| 11 |
-
from src.flux.xflux_pipeline import XFluxPipeline
|
| 12 |
import random
|
| 13 |
|
| 14 |
-
def run_xflux_pipeline(
|
| 15 |
-
prompt, image, repo_id, name, device,
|
| 16 |
-
model_type, width, height, timestep_to_start_cfg, num_steps, true_gs, guidance,
|
| 17 |
-
neg_prompt="",
|
| 18 |
-
negative_image=None,
|
| 19 |
-
save_path='results', control_type='depth', use_controlnet=False, seed=None, num_images_per_prompt=1, use_lora=False, lora_weight=0.7, lora_repo_id="XLabs-AI/flux-lora-collection", lora_name="realism_lora.safetensors", use_ip=False
|
| 20 |
-
):
|
| 21 |
-
# Montando os argumentos simulando a linha de comando
|
| 22 |
-
class Args:
|
| 23 |
-
def __init__(self):
|
| 24 |
-
self.prompt = prompt
|
| 25 |
-
self.image = image
|
| 26 |
-
self.control_type = control_type
|
| 27 |
-
self.repo_id = repo_id
|
| 28 |
-
self.name = name
|
| 29 |
-
self.device = device
|
| 30 |
-
self.use_controlnet = use_controlnet
|
| 31 |
-
self.model_type = model_type
|
| 32 |
-
self.width = width
|
| 33 |
-
self.height = height
|
| 34 |
-
self.timestep_to_start_cfg = timestep_to_start_cfg
|
| 35 |
-
self.num_steps = num_steps
|
| 36 |
-
self.true_gs = true_gs
|
| 37 |
-
self.guidance = guidance
|
| 38 |
-
self.num_images_per_prompt = num_images_per_prompt
|
| 39 |
-
self.seed = seed if seed else 123456789
|
| 40 |
-
self.neg_prompt = neg_prompt
|
| 41 |
-
self.img_prompt = Image.open(image)
|
| 42 |
-
self.neg_img_prompt = Image.open(negative_image) if negative_image else None
|
| 43 |
-
self.ip_scale = 1.0
|
| 44 |
-
self.neg_ip_scale = 1.0
|
| 45 |
-
self.local_path = None
|
| 46 |
-
self.ip_repo_id = "XLabs-AI/flux-ip-adapter"
|
| 47 |
-
self.ip_name = "flux-ip-adapter.safetensors"
|
| 48 |
-
self.ip_local_path = None
|
| 49 |
-
self.lora_repo_id = lora_repo_id
|
| 50 |
-
self.lora_name = lora_name
|
| 51 |
-
self.lora_local_path = None
|
| 52 |
-
self.offload = False
|
| 53 |
-
self.use_ip = use_ip
|
| 54 |
-
self.use_lora = use_lora
|
| 55 |
-
self.lora_weight = lora_weight
|
| 56 |
-
self.save_path = save_path
|
| 57 |
-
|
| 58 |
-
args = Args()
|
| 59 |
-
|
| 60 |
-
# Carregar a imagem se fornecida
|
| 61 |
-
if args.image:
|
| 62 |
-
image = Image.open(args.image)
|
| 63 |
-
else:
|
| 64 |
-
image = None
|
| 65 |
-
|
| 66 |
-
# Inicializar o pipeline com os parâmetros necessários
|
| 67 |
-
xflux_pipeline = XFluxPipeline(args.model_type, args.device, args.offload)
|
| 68 |
-
|
| 69 |
-
# Configurar ControlNet se necessário
|
| 70 |
-
if args.use_controlnet:
|
| 71 |
-
print('Loading ControlNet:', args.local_path, args.repo_id, args.name)
|
| 72 |
-
xflux_pipeline.set_controlnet(args.control_type, args.local_path, args.repo_id, args.name)
|
| 73 |
-
if args.use_ip:
|
| 74 |
-
print('load ip-adapter:', args.ip_local_path, args.ip_repo_id, args.ip_name)
|
| 75 |
-
xflux_pipeline.set_ip(args.ip_local_path, args.ip_repo_id, args.ip_name)
|
| 76 |
-
if args.use_lora:
|
| 77 |
-
print('load lora:', args.lora_local_path, args.lora_repo_id, args.lora_name)
|
| 78 |
-
xflux_pipeline.set_lora(args.lora_local_path, args.lora_repo_id, args.lora_name, args.lora_weight)
|
| 79 |
-
|
| 80 |
-
# Laço para gerar imagens
|
| 81 |
-
images = []
|
| 82 |
-
for _ in range(args.num_images_per_prompt):
|
| 83 |
-
seed = random.randint(0, 2147483647)
|
| 84 |
-
result = xflux_pipeline(
|
| 85 |
-
prompt=args.prompt,
|
| 86 |
-
controlnet_image=image,
|
| 87 |
-
width=args.width,
|
| 88 |
-
height=args.height,
|
| 89 |
-
guidance=args.guidance,
|
| 90 |
-
num_steps=args.num_steps,
|
| 91 |
-
seed=seed,
|
| 92 |
-
true_gs=args.true_gs,
|
| 93 |
-
neg_prompt=args.neg_prompt,
|
| 94 |
-
timestep_to_start_cfg=args.timestep_to_start_cfg,
|
| 95 |
-
image_prompt=args.img_prompt,
|
| 96 |
-
neg_image_prompt=args.neg_img_prompt,
|
| 97 |
-
ip_scale=args.ip_scale,
|
| 98 |
-
neg_ip_scale=args.neg_ip_scale,
|
| 99 |
-
)
|
| 100 |
-
images.append(result)
|
| 101 |
-
|
| 102 |
-
return images
|
| 103 |
-
|
| 104 |
@spaces.GPU(duration=300)
|
| 105 |
def process_image(image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip, lora_name, lora_path, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
return run_xflux_pipeline(
|
| 107 |
prompt=prompt,
|
| 108 |
neg_prompt=neg_prompt,
|
|
|
|
| 8 |
from PIL import Image
|
| 9 |
import os
|
| 10 |
|
|
|
|
| 11 |
import random
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
@spaces.GPU(duration=300)
|
| 14 |
def process_image(image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip, lora_name, lora_path, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg):
|
| 15 |
+
from src.flux.xflux_pipeline import XFluxPipeline
|
| 16 |
+
def run_xflux_pipeline(
|
| 17 |
+
prompt, image, repo_id, name, device,
|
| 18 |
+
model_type, width, height, timestep_to_start_cfg, num_steps, true_gs, guidance,
|
| 19 |
+
neg_prompt="",
|
| 20 |
+
negative_image=None,
|
| 21 |
+
save_path='results', control_type='depth', use_controlnet=False, seed=None, num_images_per_prompt=1, use_lora=False, lora_weight=0.7, lora_repo_id="XLabs-AI/flux-lora-collection", lora_name="realism_lora.safetensors", use_ip=False
|
| 22 |
+
):
|
| 23 |
+
# Montando os argumentos simulando a linha de comando
|
| 24 |
+
class Args:
|
| 25 |
+
def __init__(self):
|
| 26 |
+
self.prompt = prompt
|
| 27 |
+
self.image = image
|
| 28 |
+
self.control_type = control_type
|
| 29 |
+
self.repo_id = repo_id
|
| 30 |
+
self.name = name
|
| 31 |
+
self.device = device
|
| 32 |
+
self.use_controlnet = use_controlnet
|
| 33 |
+
self.model_type = model_type
|
| 34 |
+
self.width = width
|
| 35 |
+
self.height = height
|
| 36 |
+
self.timestep_to_start_cfg = timestep_to_start_cfg
|
| 37 |
+
self.num_steps = num_steps
|
| 38 |
+
self.true_gs = true_gs
|
| 39 |
+
self.guidance = guidance
|
| 40 |
+
self.num_images_per_prompt = num_images_per_prompt
|
| 41 |
+
self.seed = seed if seed else 123456789
|
| 42 |
+
self.neg_prompt = neg_prompt
|
| 43 |
+
self.img_prompt = Image.open(image)
|
| 44 |
+
self.neg_img_prompt = Image.open(negative_image) if negative_image else None
|
| 45 |
+
self.ip_scale = 1.0
|
| 46 |
+
self.neg_ip_scale = 1.0
|
| 47 |
+
self.local_path = None
|
| 48 |
+
self.ip_repo_id = "XLabs-AI/flux-ip-adapter"
|
| 49 |
+
self.ip_name = "flux-ip-adapter.safetensors"
|
| 50 |
+
self.ip_local_path = None
|
| 51 |
+
self.lora_repo_id = lora_repo_id
|
| 52 |
+
self.lora_name = lora_name
|
| 53 |
+
self.lora_local_path = None
|
| 54 |
+
self.offload = False
|
| 55 |
+
self.use_ip = use_ip
|
| 56 |
+
self.use_lora = use_lora
|
| 57 |
+
self.lora_weight = lora_weight
|
| 58 |
+
self.save_path = save_path
|
| 59 |
+
|
| 60 |
+
args = Args()
|
| 61 |
+
|
| 62 |
+
# Carregar a imagem se fornecida
|
| 63 |
+
if args.image:
|
| 64 |
+
image = Image.open(args.image)
|
| 65 |
+
else:
|
| 66 |
+
image = None
|
| 67 |
+
|
| 68 |
+
# Inicializar o pipeline com os parâmetros necessários
|
| 69 |
+
xflux_pipeline = XFluxPipeline(args.model_type, args.device, args.offload)
|
| 70 |
+
|
| 71 |
+
# Configurar ControlNet se necessário
|
| 72 |
+
if args.use_controlnet:
|
| 73 |
+
print('Loading ControlNet:', args.local_path, args.repo_id, args.name)
|
| 74 |
+
xflux_pipeline.set_controlnet(args.control_type, args.local_path, args.repo_id, args.name)
|
| 75 |
+
if args.use_ip:
|
| 76 |
+
print('load ip-adapter:', args.ip_local_path, args.ip_repo_id, args.ip_name)
|
| 77 |
+
xflux_pipeline.set_ip(args.ip_local_path, args.ip_repo_id, args.ip_name)
|
| 78 |
+
if args.use_lora:
|
| 79 |
+
print('load lora:', args.lora_local_path, args.lora_repo_id, args.lora_name)
|
| 80 |
+
xflux_pipeline.set_lora(args.lora_local_path, args.lora_repo_id, args.lora_name, args.lora_weight)
|
| 81 |
+
|
| 82 |
+
# Laço para gerar imagens
|
| 83 |
+
images = []
|
| 84 |
+
for _ in range(args.num_images_per_prompt):
|
| 85 |
+
seed = random.randint(0, 2147483647)
|
| 86 |
+
result = xflux_pipeline(
|
| 87 |
+
prompt=args.prompt,
|
| 88 |
+
controlnet_image=image,
|
| 89 |
+
width=args.width,
|
| 90 |
+
height=args.height,
|
| 91 |
+
guidance=args.guidance,
|
| 92 |
+
num_steps=args.num_steps,
|
| 93 |
+
seed=seed,
|
| 94 |
+
true_gs=args.true_gs,
|
| 95 |
+
neg_prompt=args.neg_prompt,
|
| 96 |
+
timestep_to_start_cfg=args.timestep_to_start_cfg,
|
| 97 |
+
image_prompt=args.img_prompt,
|
| 98 |
+
neg_image_prompt=args.neg_img_prompt,
|
| 99 |
+
ip_scale=args.ip_scale,
|
| 100 |
+
neg_ip_scale=args.neg_ip_scale,
|
| 101 |
+
)
|
| 102 |
+
images.append(result)
|
| 103 |
+
|
| 104 |
+
return images
|
| 105 |
+
|
| 106 |
return run_xflux_pipeline(
|
| 107 |
prompt=prompt,
|
| 108 |
neg_prompt=neg_prompt,
|