Spaces:
Running
Running
Gül Sena Altıntaş
commited on
Commit
·
ce07484
1
Parent(s):
44cdae3
Further improvements
Browse files- app.py +307 -74
- mappings.py +11 -1
- requirements.txt +4 -1
- utils.py +536 -70
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
from collections import Counter
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
|
@@ -6,12 +7,44 @@ import plotly.express as px
|
|
| 6 |
import plotly.graph_objects as go
|
| 7 |
|
| 8 |
from utils import (
|
|
|
|
| 9 |
get_normalization_methods,
|
| 10 |
normalize_text,
|
|
|
|
|
|
|
| 11 |
tokenize_with_hf,
|
| 12 |
tokenize_with_tiktoken,
|
| 13 |
)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def compare_tokenizers(text, selected_models, show_details=False):
|
| 17 |
if not text.strip():
|
|
@@ -20,11 +53,7 @@ def compare_tokenizers(text, selected_models, show_details=False):
|
|
| 20 |
results = {}
|
| 21 |
|
| 22 |
for model in selected_models:
|
| 23 |
-
|
| 24 |
-
results[model] = tokenize_with_tiktoken(text, model)
|
| 25 |
-
else:
|
| 26 |
-
results[model] = tokenize_with_hf(text, model)
|
| 27 |
-
|
| 28 |
# Generate outputs
|
| 29 |
efficiency_output, tokenization_html, token_ids_output = generate_basic_comparison(
|
| 30 |
results
|
|
@@ -73,6 +102,7 @@ def generate_basic_comparison(results):
|
|
| 73 |
|
| 74 |
|
| 75 |
def generate_interactive_tokenization(results):
|
|
|
|
| 76 |
"""Generate HTML with working hover highlighting across tokenizers"""
|
| 77 |
if not results:
|
| 78 |
return "<p>No tokenization results to display.</p>"
|
|
@@ -170,6 +200,125 @@ def generate_interactive_tokenization(results):
|
|
| 170 |
display: inline-block;
|
| 171 |
justify-content: space-between;
|
| 172 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
</style>
|
| 174 |
|
| 175 |
<div class="highlight-info" id="highlight-info"></div>
|
|
@@ -208,6 +357,40 @@ def generate_interactive_tokenization(results):
|
|
| 208 |
info.style.display = 'none';
|
| 209 |
}
|
| 210 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
</script>
|
| 212 |
""")
|
| 213 |
|
|
@@ -239,10 +422,14 @@ def generate_interactive_tokenization(results):
|
|
| 239 |
subword_count = 0
|
| 240 |
for i, token in enumerate(result["tokens"]):
|
| 241 |
token_text = token["text"]
|
|
|
|
| 242 |
display_text = token_text if token_text.strip() else "·"
|
| 243 |
if token_text == "<newline>":
|
| 244 |
html_parts.append("<br>")
|
| 245 |
continue
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
# Determine token class
|
| 248 |
token_class = f"token token-{token['type']}"
|
|
@@ -268,22 +455,72 @@ def generate_interactive_tokenization(results):
|
|
| 268 |
.replace("\r", "\n")
|
| 269 |
)
|
| 270 |
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
html_parts.append(f"""
|
| 284 |
</div>
|
| 285 |
<div style="margin-top: 8px; font-size: 12px; color: #666;">
|
| 286 |
-
Subwords: {subword_count}/{len(result["tokens"])}
|
| 287 |
({subword_count / len(result["tokens"]) * 100:.1f}%)
|
| 288 |
</div>
|
| 289 |
</div>
|
|
@@ -348,17 +585,9 @@ def compare_with_normalization(
|
|
| 348 |
normalized_results = {}
|
| 349 |
|
| 350 |
for model in selected_models:
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
normalized_results[model] = tokenize_with_tiktoken(
|
| 355 |
-
normalized_text, model
|
| 356 |
-
)
|
| 357 |
-
else:
|
| 358 |
-
original_results[model] = tokenize_with_hf(text, model)
|
| 359 |
-
if normalization_method != "none":
|
| 360 |
-
normalized_results[model] = tokenize_with_hf(normalized_text, model)
|
| 361 |
-
|
| 362 |
return original_results, normalized_results, normalized_text
|
| 363 |
|
| 364 |
|
|
@@ -523,29 +752,52 @@ with gr.Blocks(
|
|
| 523 |
with gr.Row():
|
| 524 |
with gr.Column(scale=2):
|
| 525 |
# Sample texts dropdown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
sample_texts = gr.Dropdown(
|
| 527 |
-
choices=
|
| 528 |
-
"Custom text (enter below)",
|
| 529 |
-
"english: The quick brown fox jumps over the lazy dog. It's 1234.56 and costs $789.",
|
| 530 |
-
"french: Le renard brun rapide saute par-dessus le chien paresseux. C'est 1234,56 et coûte 789€.",
|
| 531 |
-
"german: Der schnelle braune Fuchs springt über den faulen Hund. Es ist 1234,56 und kostet 789€.",
|
| 532 |
-
"turkish: Hızlı kahverengi tilki tembel köpeğin üstunden atlar. 1234.56'dır ve 789$ tutar.",
|
| 533 |
-
"chinese: 快速的棕色狐狸跳过懒狗。它是1234.56,价格为789美元。",
|
| 534 |
-
"arabic: الثعلب البني السريع يقفز فوق الكلب الكسول. إنه 1234.56 ويكلف 789 دولارًا.",
|
| 535 |
-
"hindi: तेज भूरी लोमड़ी आलसी कुत्ते पर कूदती है। यह 1234.56 है और 789 डॉलर की कीमत है।",
|
| 536 |
-
"code: def calculate_sum(a, b):\n return a + b\n\nresult = calculate_sum(123, 456)",
|
| 537 |
-
"mixed: English text with numbers 12345 and special chars !@#$%, plus some code: x = f(y)",
|
| 538 |
-
"numbers: The price is $123.45 (20% off) = $98.76 savings 1 12 123 1234 12345 123456 1234567 12345678 123456789",
|
| 539 |
-
"Mixed languages: Hello! 你好! こんにちは! Bonjour! Hola! مرحبا!",
|
| 540 |
-
"Subword challenge: antidisestablishmentarianism pseudopseudohypoparathyroidism",
|
| 541 |
-
"Special characters: @user123 #AI #NLP https://example.com/api?q=tokenization&limit=100",
|
| 542 |
-
"Scientific text: The mitochondria (powerhouse of the cell) produces ATP through oxidative phosphorylation.",
|
| 543 |
-
"Technical jargon: The RESTful API endpoint /users/{id}/preferences supports GET/POST/PUT/DELETE operations.",
|
| 544 |
-
"Emoji & Unicode: I love AI! 🤖✨ The café naïve résumé 北京大学 العربية😀 👍 🚀 🌍 🎉 💡 🔥 🎵 🏆 🌈",
|
| 545 |
-
"Long compound words (German): Donaudampfschifffahrtselektrizitätenhauptbetriebswerkbauunterbeamtengesellschaft",
|
| 546 |
-
'JSON data: {"name": "John Doe", "age": 30, "skills": ["Python", "JavaScript", "AI/ML"]}',
|
| 547 |
-
"Medical terminology: Pneumonoultramicroscopicsilicovolcanoconiosisdiagnosis requires thorough radiological examination.",
|
| 548 |
-
],
|
| 549 |
value="Custom text (enter below)",
|
| 550 |
label="Choose a sample text or enter your own",
|
| 551 |
interactive=True,
|
|
@@ -555,35 +807,16 @@ with gr.Blocks(
|
|
| 555 |
label="Text to tokenize",
|
| 556 |
placeholder="Enter your text here or select a sample above...",
|
| 557 |
lines=4,
|
| 558 |
-
value=
|
| 559 |
)
|
| 560 |
with gr.Column(scale=1):
|
| 561 |
with gr.Tabs():
|
| 562 |
with gr.TabItem("Models"):
|
| 563 |
model_selector = gr.CheckboxGroup(
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
"llama-3",
|
| 569 |
-
"gemma-2",
|
| 570 |
-
"qwen3",
|
| 571 |
-
"qwen2.5",
|
| 572 |
-
"bert",
|
| 573 |
-
"bloom",
|
| 574 |
-
"aya-expanse",
|
| 575 |
-
"comma",
|
| 576 |
-
"tokenmonster",
|
| 577 |
-
"byt5",
|
| 578 |
-
],
|
| 579 |
-
value=[
|
| 580 |
-
"gpt-4",
|
| 581 |
-
"llama-3",
|
| 582 |
-
"gemma-2",
|
| 583 |
-
"qwen2.5",
|
| 584 |
-
"tokenmonster",
|
| 585 |
-
],
|
| 586 |
-
label="Select tokenizers to compare",
|
| 587 |
)
|
| 588 |
show_details = gr.Checkbox(
|
| 589 |
label="Show detailed analysis", value=False
|
|
|
|
| 1 |
from collections import Counter
|
| 2 |
+
from pathlib import Path
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
|
|
|
| 7 |
import plotly.graph_objects as go
|
| 8 |
|
| 9 |
from utils import (
|
| 10 |
+
clean_token_display,
|
| 11 |
get_normalization_methods,
|
| 12 |
normalize_text,
|
| 13 |
+
tokenize_w_tekken,
|
| 14 |
+
tokenize_with_byt5,
|
| 15 |
tokenize_with_hf,
|
| 16 |
tokenize_with_tiktoken,
|
| 17 |
)
|
| 18 |
|
| 19 |
+
TIKTOKENS = [ "gpt-4o", "gpt-2"]
|
| 20 |
+
HF = ["llama-3", "gemma-2", "qwen3", "mbert", "phi-3", "xglm", "bloom", "aya-expanse", "comma", "tokenmonster", "byt5"]
|
| 21 |
+
available_tokenizers = TIKTOKENS + HF + ["tekken", ]
|
| 22 |
+
pre_selected_tokenizers = ["xglm"]
|
| 23 |
+
pre_selected_tokenizers= available_tokenizers
|
| 24 |
+
pre_selected_tokenizers=[]
|
| 25 |
+
OUT_FILE = Path("paper-outs.txt")
|
| 26 |
+
if not OUT_FILE.exists():
|
| 27 |
+
open(OUT_FILE, "w")
|
| 28 |
+
|
| 29 |
+
def tokenize(model, text):
|
| 30 |
+
|
| 31 |
+
if model in ["gpt-4", "gpt-2", "gpt-4o"]:
|
| 32 |
+
toks = tokenize_with_tiktoken(text, model)
|
| 33 |
+
elif model in ["tekken"]:
|
| 34 |
+
toks = tokenize_w_tekken(text, model)
|
| 35 |
+
elif "byt5" in model:
|
| 36 |
+
toks = tokenize_with_byt5(text, model)
|
| 37 |
+
else:
|
| 38 |
+
toks = tokenize_with_hf(text, model)
|
| 39 |
+
with open(OUT_FILE, "a", encoding="utf-8") as file: # Specify UTF-8 encoding
|
| 40 |
+
file.write(toks["model"]+"\n")
|
| 41 |
+
file.write(f"Text: {text}\n")
|
| 42 |
+
s= str(",".join([str(t["text"]) for t in toks["tokens"]])) +"\n"
|
| 43 |
+
# s = s.encode("utf-8")
|
| 44 |
+
# s = s.encode('latin1').decode('utf-8')
|
| 45 |
+
file.write(s)
|
| 46 |
+
file.write("\n")
|
| 47 |
+
return toks
|
| 48 |
|
| 49 |
def compare_tokenizers(text, selected_models, show_details=False):
|
| 50 |
if not text.strip():
|
|
|
|
| 53 |
results = {}
|
| 54 |
|
| 55 |
for model in selected_models:
|
| 56 |
+
results[model] = tokenize(model, text)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
# Generate outputs
|
| 58 |
efficiency_output, tokenization_html, token_ids_output = generate_basic_comparison(
|
| 59 |
results
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
def generate_interactive_tokenization(results):
|
| 105 |
+
##todo main vis
|
| 106 |
"""Generate HTML with working hover highlighting across tokenizers"""
|
| 107 |
if not results:
|
| 108 |
return "<p>No tokenization results to display.</p>"
|
|
|
|
| 200 |
display: inline-block;
|
| 201 |
justify-content: space-between;
|
| 202 |
}
|
| 203 |
+
|
| 204 |
+
/* Multi-token span styles */
|
| 205 |
+
.token-span-container {
|
| 206 |
+
display: inline-flex;
|
| 207 |
+
margin: 2px;
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
.token-multi-span {
|
| 211 |
+
background: linear-gradient(45deg, #e8f5e8 25%, #f3e5f5 25%, #f3e5f5 50%, #e8f5e8 50%, #e8f5e8 75%, #f3e5f5 75%);
|
| 212 |
+
background-size: 8px 8px;
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
.token-span-part {
|
| 216 |
+
margin: 0 !important;
|
| 217 |
+
border-radius: 0 !important;
|
| 218 |
+
border-right: none !important;
|
| 219 |
+
position: relative;
|
| 220 |
+
min-width: 20px;
|
| 221 |
+
text-align: center;
|
| 222 |
+
font-size: 11px;
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
/* Hover effect for multi-token spans */
|
| 227 |
+
.token-span-container:hover .token-span-part {
|
| 228 |
+
transform: scale(1.02);
|
| 229 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
/* Different visual for multi-token spans */
|
| 233 |
+
.token-multi-span.token-word {
|
| 234 |
+
background: repeating-linear-gradient(45deg, #e8f5e8, #e8f5e8 4px, #d4edda 4px, #d4edda 8px);
|
| 235 |
+
}
|
| 236 |
+
.token-multi-span.token-number {
|
| 237 |
+
background: repeating-linear-gradient(45deg, #f3e5f5, #f3e5f5 4px, #e1bee7 4px, #e1bee7 8px);
|
| 238 |
+
}
|
| 239 |
+
.token-multi-span.token-punctuation {
|
| 240 |
+
background: repeating-linear-gradient(45deg, #ffebee, #ffebee 4px, #ffcdd2 4px, #ffcdd2 8px);
|
| 241 |
+
}
|
| 242 |
+
/* Multi-token span styles */
|
| 243 |
+
.token-span-container {
|
| 244 |
+
display: inline-flex;
|
| 245 |
+
margin: 2px;
|
| 246 |
+
cursor: pointer;
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
.token-multi-span {
|
| 250 |
+
/* Distinctive background pattern for multi-token spans */
|
| 251 |
+
background: repeating-linear-gradient(
|
| 252 |
+
45deg,
|
| 253 |
+
transparent,
|
| 254 |
+
transparent 2px,
|
| 255 |
+
rgba(0,0,0,0.1) 2px,
|
| 256 |
+
rgba(0,0,0,0.1) 4px
|
| 257 |
+
);
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
.token-span-part {
|
| 261 |
+
margin: 0 !important;
|
| 262 |
+
border-radius: 0 !important;
|
| 263 |
+
border-right: none !important;
|
| 264 |
+
position: relative;
|
| 265 |
+
padding: 4px 6px;
|
| 266 |
+
border: 1px dashed rgba(0,0,0,0.3) !important;
|
| 267 |
+
pointer-events: none; /* Prevent individual box clicks */
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
.token-span-first {
|
| 271 |
+
border-radius: 4px 0 0 4px !important;
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
.token-span-last {
|
| 275 |
+
border-radius: 0 4px 4px 0 !important;
|
| 276 |
+
border-right: 1px solid !important;
|
| 277 |
+
}
|
| 278 |
+
|
| 279 |
+
/* Connecting lines between boxes */
|
| 280 |
+
.token-span-part:not(.token-span-last)::after {
|
| 281 |
+
content: '';
|
| 282 |
+
position: absolute;
|
| 283 |
+
top: 0;
|
| 284 |
+
right: -1px;
|
| 285 |
+
width: 1px;
|
| 286 |
+
height: 100%;
|
| 287 |
+
background: rgba(0,0,0,0.3);
|
| 288 |
+
z-index: 1;
|
| 289 |
+
}
|
| 290 |
+
|
| 291 |
+
/* Hover effect for entire multi-token span */
|
| 292 |
+
.token-span-container:hover .token-span-part {
|
| 293 |
+
transform: scale(1.05);
|
| 294 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.2);
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
.token-span-container.highlighted .token-span-part {
|
| 298 |
+
background: #ff6b6b !important;
|
| 299 |
+
border-color: #e55353 !important;
|
| 300 |
+
color: white !important;
|
| 301 |
+
box-shadow: 0 0 10px rgba(255, 107, 107, 0.5) !important;
|
| 302 |
+
transform: scale(1.1) !important;
|
| 303 |
+
z-index: 100 !important;
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
/* Different patterns for different token types when multi-span */
|
| 307 |
+
.token-multi-span.token-word .token-span-part {
|
| 308 |
+
background: #e8f5e8;
|
| 309 |
+
border-color: #4caf50;
|
| 310 |
+
color: #2e7d32;
|
| 311 |
+
}
|
| 312 |
+
.token-multi-span.token-number .token-span-part {
|
| 313 |
+
background: #f3e5f5;
|
| 314 |
+
border-color: #9c27b0;
|
| 315 |
+
color: #7b1fa2;
|
| 316 |
+
}
|
| 317 |
+
.token-multi-span.token-punctuation .token-span-part {
|
| 318 |
+
background: #ffebee;
|
| 319 |
+
border-color: #f44336;
|
| 320 |
+
color: #c62828;
|
| 321 |
+
}
|
| 322 |
</style>
|
| 323 |
|
| 324 |
<div class="highlight-info" id="highlight-info"></div>
|
|
|
|
| 357 |
info.style.display = 'none';
|
| 358 |
}
|
| 359 |
}
|
| 360 |
+
|
| 361 |
+
function highlightTokens(targetText) {
|
| 362 |
+
// Clear all highlights
|
| 363 |
+
document.querySelectorAll('.token, .token-span-container').forEach(function(element) {
|
| 364 |
+
element.classList.remove('highlighted');
|
| 365 |
+
});
|
| 366 |
+
|
| 367 |
+
// Highlight matching tokens and spans
|
| 368 |
+
let count = 0;
|
| 369 |
+
|
| 370 |
+
// Single tokens
|
| 371 |
+
document.querySelectorAll('.token').forEach(function(token) {
|
| 372 |
+
if (token.getAttribute('data-text') === targetText) {
|
| 373 |
+
token.classList.add('highlighted');
|
| 374 |
+
count++;
|
| 375 |
+
}
|
| 376 |
+
});
|
| 377 |
+
|
| 378 |
+
// Multi-token spans
|
| 379 |
+
document.querySelectorAll('.token-span-container').forEach(function(span) {
|
| 380 |
+
if (span.getAttribute('data-text') === targetText) {
|
| 381 |
+
span.classList.add('highlighted');
|
| 382 |
+
count++;
|
| 383 |
+
}
|
| 384 |
+
});
|
| 385 |
+
|
| 386 |
+
// Show info
|
| 387 |
+
const info = document.getElementById('highlight-info');
|
| 388 |
+
if (info) {
|
| 389 |
+
const displayText = targetText === ' ' ? '(space)' : targetText;
|
| 390 |
+
info.textContent = '"' + displayText + '" appears in ' + count + ' positions';
|
| 391 |
+
info.style.display = 'block';
|
| 392 |
+
}
|
| 393 |
+
}
|
| 394 |
</script>
|
| 395 |
""")
|
| 396 |
|
|
|
|
| 422 |
subword_count = 0
|
| 423 |
for i, token in enumerate(result["tokens"]):
|
| 424 |
token_text = token["text"]
|
| 425 |
+
token_text = clean_token_display(token_text)
|
| 426 |
display_text = token_text if token_text.strip() else "·"
|
| 427 |
if token_text == "<newline>":
|
| 428 |
html_parts.append("<br>")
|
| 429 |
continue
|
| 430 |
+
# Check if this token spans multiple token IDs
|
| 431 |
+
token_ids = token["id"] if isinstance(token["id"], list) else [token["id"]]
|
| 432 |
+
is_multi_token = len(token_ids) > 1
|
| 433 |
|
| 434 |
# Determine token class
|
| 435 |
token_class = f"token token-{token['type']}"
|
|
|
|
| 455 |
.replace("\r", "\n")
|
| 456 |
)
|
| 457 |
|
| 458 |
+
if is_multi_token:
|
| 459 |
+
# Create a container for the multi-token span
|
| 460 |
+
span_id = f"span_{model}_{i}"
|
| 461 |
+
token_ids_str = ",".join(map(str, token_ids))
|
| 462 |
+
|
| 463 |
+
html_parts.append(f"""<span class="token-span-container"
|
| 464 |
+
id="{span_id}_container"
|
| 465 |
+
data-text="{token_text.replace('"', """).replace("'", "'")}"
|
| 466 |
+
data-ids="{token_ids_str}"
|
| 467 |
+
data-position="{i}"
|
| 468 |
+
data-model="{model}"
|
| 469 |
+
onmouseover="highlightTokens('{escaped_text}')"
|
| 470 |
+
onmouseout="clearHighlights()"
|
| 471 |
+
onclick="alert('Token: \\'{escaped_text}\\'\\nIDs: [{token_ids_str}]\\nModel: {model}\\nSpans {len(token_ids)} token IDs')"
|
| 472 |
+
title="Text: '{token_text}' | IDs: [{token_ids_str}] | Type: {token["type"]} | Subword: {token["is_subword"]}">""")
|
| 473 |
+
|
| 474 |
+
# Create individual boxes for each token ID - but they act as one unit
|
| 475 |
+
for j, tid in enumerate(token_ids):
|
| 476 |
+
token_id = f"token_{model}_{i}_{j}"
|
| 477 |
+
box_class = f"{token_class} token-span-part"
|
| 478 |
+
box_content = ""
|
| 479 |
+
|
| 480 |
+
# Add position indicators for styling
|
| 481 |
+
if j == 0:
|
| 482 |
+
box_class += " token-span-first"
|
| 483 |
+
box_content = escaped_display
|
| 484 |
+
elif j == len(token_ids) - 1:
|
| 485 |
+
box_class += " token-span-last"
|
| 486 |
+
else:
|
| 487 |
+
box_class += " token-span-middle"
|
| 488 |
+
|
| 489 |
+
# Each box shows the same text (the combined character/text)
|
| 490 |
+
html_parts.append(f"""<span class="{box_class}"
|
| 491 |
+
id="{token_id}"
|
| 492 |
+
data-token-id="{tid}">{box_content}</span>""")
|
| 493 |
+
|
| 494 |
+
html_parts.append("</span>")
|
| 495 |
+
else:
|
| 496 |
+
# Single token - original behavior
|
| 497 |
+
token_id = f"token_{model}_{i}"
|
| 498 |
+
html_parts.append(f"""<span class="{token_class}"
|
| 499 |
+
id="{token_id}"
|
| 500 |
+
data-text="{token_text.replace('"', """).replace("'", "'")}"
|
| 501 |
+
data-id="{token_ids[0]}"
|
| 502 |
+
data-position="{i}"
|
| 503 |
+
data-model="{model}"
|
| 504 |
+
title="Text: '{token_text}' | ID: {token_ids[0]} | Type: {token["type"]} | Subword: {token["is_subword"]}"
|
| 505 |
+
onmouseover="highlightTokens('{escaped_text}')"
|
| 506 |
+
onmouseout="clearHighlights()"
|
| 507 |
+
onclick="alert('Token: \\'{escaped_text}\\'\\nID: {token_ids[0]}\\nModel: {model}')">{escaped_display}</span>""")
|
| 508 |
+
# # Use inline event handlers that work in Gradio
|
| 509 |
+
# html_parts.append(f"""<span class="{token_class}"
|
| 510 |
+
# id="{token_id}"
|
| 511 |
+
# data-text="{token_text.replace('"', """).replace("'", "'")}"
|
| 512 |
+
# data-id="{token["id"]}"
|
| 513 |
+
# data-position="{i}"
|
| 514 |
+
# data-model="{model}"
|
| 515 |
+
# title="Text: '{token_text}' | ID: {token["id"]} | Type: {token["type"]} | Subword: {token["is_subword"]}"
|
| 516 |
+
# onmouseover="highlightTokens('{escaped_text}')"
|
| 517 |
+
# onmouseout="clearHighlights()"
|
| 518 |
+
# onclick="alert('Token: \\'{escaped_text}\\'\\nID: {token["id"]}\\nModel: {model}')">{escaped_display}</span>""")
|
| 519 |
|
| 520 |
html_parts.append(f"""
|
| 521 |
</div>
|
| 522 |
<div style="margin-top: 8px; font-size: 12px; color: #666;">
|
| 523 |
+
Subwords: {subword_count}/{sum([len(t) for t in result["tokens"]])}
|
| 524 |
({subword_count / len(result["tokens"]) * 100:.1f}%)
|
| 525 |
</div>
|
| 526 |
</div>
|
|
|
|
| 585 |
normalized_results = {}
|
| 586 |
|
| 587 |
for model in selected_models:
|
| 588 |
+
original_results[model] = tokenize(model, text)
|
| 589 |
+
if normalization_method != "none":
|
| 590 |
+
normalized_results[model] = tokenize(model, text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 591 |
return original_results, normalized_results, normalized_text
|
| 592 |
|
| 593 |
|
|
|
|
| 752 |
with gr.Row():
|
| 753 |
with gr.Column(scale=2):
|
| 754 |
# Sample texts dropdown
|
| 755 |
+
pre_choices = [
|
| 756 |
+
"Custom text (enter below)",
|
| 757 |
+
"""
|
| 758 |
+
ᴾʸᵗʰᵒⁿ
|
| 759 |
+
ₚᵧₜₕₒₙ
|
| 760 |
+
P̲y̲t̲h̲o̲n̲
|
| 761 |
+
P̄ȳt̄h̄ōn̄
|
| 762 |
+
P̅y̅t̅h̅o̅n̅
|
| 763 |
+
ⓅⓎⓉⒽⓄⓃ
|
| 764 |
+
⒫⒴⒯⒣⒪⒩
|
| 765 |
+
🄿🅈🅃🄷🄾🄽
|
| 766 |
+
ⓅⓎⓉⒽⓄⓃ
|
| 767 |
+
Python
|
| 768 |
+
Pʎʇɥou
|
| 769 |
+
Pyʇɥou
|
| 770 |
+
P̊ẙt̊h̊o̊n̊
|
| 771 |
+
Pëthøñ
|
| 772 |
+
P̶y̶t̶h̶o̶n̶
|
| 773 |
+
P̸y̸t̸h̸o̸n̸
|
| 774 |
+
P̷y̷t̷h̷o̷n̷
|
| 775 |
+
P̴y̴t̴h̴o̴n̴
|
| 776 |
+
𝒫𝓎𝓉𝒽𝑜𝓃
|
| 777 |
+
ℙ𝕪𝕥𝕙𝕠𝕟
|
| 778 |
+
""",
|
| 779 |
+
"english: The quick brown fox jumps over the lazy dog. It's 1234.56 and costs $789.",
|
| 780 |
+
"french: Le renard brun rapide saute par-dessus le chien paresseux. C'est 1234,56 et coûte 789€.",
|
| 781 |
+
"german: Der schnelle braune Fuchs springt über den faulen Hund. Es ist 1234,56 und kostet 789€.",
|
| 782 |
+
"turkish: Hızlı kahverengi tilki tembel köpeğin üstunden atlar. 1234.56'dır ve 789$ tutar.",
|
| 783 |
+
"chinese: 快速的棕色狐狸跳过懒狗。它是1234.56,价格为789美元。",
|
| 784 |
+
"arabic: الثعلب البني السريع يقفز فوق الكلب الكسول. إنه 1234.56 ويكلف 789 دولارًا.",
|
| 785 |
+
"hindi: तेज भूरी लोमड़ी आलसी कुत्ते पर कूदती है। यह 1234.56 है और 789 डॉलर की कीमत है।",
|
| 786 |
+
"code: def calculate_sum(a, b):\n return a + b\n\nresult = calculate_sum(123, 456)",
|
| 787 |
+
"mixed: English text with numbers 12345 and special chars !@#$%, plus some code: x = f(y)",
|
| 788 |
+
"numbers: The price is $123.45 (20% off) = $98.76 savings 1 12 123 1234 12345 123456 1234567 12345678 123456789",
|
| 789 |
+
"Mixed languages: Hello! 你好! こんにちは! Bonjour! Hola! مرحبا!",
|
| 790 |
+
"Subword challenge: antidisestablishmentarianism pseudopseudohypoparathyroidism",
|
| 791 |
+
"Special characters: @user123 #AI #NLP https://example.com/api?q=tokenization&limit=100",
|
| 792 |
+
"Scientific text: The mitochondria (powerhouse of the cell) produces ATP through oxidative phosphorylation.",
|
| 793 |
+
"Technical jargon: The RESTful API endpoint /users/{id}/preferences supports GET/POST/PUT/DELETE operations.",
|
| 794 |
+
"Emoji & Unicode: I love AI! 🤖✨ The café naïve résumé 北京大学 العربية😀 👍 🚀 🌍 🎉 💡 🔥 🎵 🏆 🌈",
|
| 795 |
+
"Long compound words (German): Donaudampfschifffahrtselektrizitätenhauptbetriebswerkbauunterbeamtengesellschaft",
|
| 796 |
+
'JSON data: {"name": "John Doe", "age": 30, "skills": ["Python", "JavaScript", "AI/ML"]}',
|
| 797 |
+
"Medical terminology: Pneumonoultramicroscopicsilicovolcanoconiosisdiagnosis requires thorough radiological examination.",
|
| 798 |
+
]
|
| 799 |
sample_texts = gr.Dropdown(
|
| 800 |
+
choices=pre_choices,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 801 |
value="Custom text (enter below)",
|
| 802 |
label="Choose a sample text or enter your own",
|
| 803 |
interactive=True,
|
|
|
|
| 807 |
label="Text to tokenize",
|
| 808 |
placeholder="Enter your text here or select a sample above...",
|
| 809 |
lines=4,
|
| 810 |
+
value=pre_choices[1],
|
| 811 |
)
|
| 812 |
with gr.Column(scale=1):
|
| 813 |
with gr.Tabs():
|
| 814 |
with gr.TabItem("Models"):
|
| 815 |
model_selector = gr.CheckboxGroup(
|
| 816 |
+
|
| 817 |
+
choices=available_tokenizers,
|
| 818 |
+
value=pre_selected_tokenizers,
|
| 819 |
+
label="Select tokenizers to compare...",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 820 |
)
|
| 821 |
show_details = gr.Checkbox(
|
| 822 |
label="Show detailed analysis", value=False
|
mappings.py
CHANGED
|
@@ -9,14 +9,20 @@ MODEL_MAP = {
|
|
| 9 |
"bloom": "bigscience/bloom-560m",
|
| 10 |
"aya-expanse": "CohereForAI/aya-expanse-8b",
|
| 11 |
"comma": "common-pile/comma-v0.1-2t",
|
| 12 |
-
"byte-level": "google/byt5-small",
|
| 13 |
"tokenmonster": "alasdairforsythe/tokenmonster",
|
| 14 |
"byt5": "google/byt5-small",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
}
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
TOKENIZER_INFO = {
|
| 19 |
"gpt-4": {"name": "GPT-4", "vocab_size": 100277, "encoding": "BPE"},
|
|
|
|
| 20 |
"gpt-2": {"name": "GPT-2", "vocab_size": 50257, "encoding": "BPE"},
|
| 21 |
"llama-2": {"name": "LLaMA-2", "vocab_size": 32000, "encoding": "SentencePiece"},
|
| 22 |
"llama-3": {"name": "LLaMA-3", "vocab_size": 128000, "encoding": "SentencePiece"},
|
|
@@ -34,4 +40,8 @@ TOKENIZER_INFO = {
|
|
| 34 |
"byte-level": {"name": "Byte-Level BPE", "vocab_size": 50000, "encoding": "BPE"},
|
| 35 |
"tokenmonster": {"name": "TokenMonster", "vocab_size": 32000, "encoding": ""},
|
| 36 |
"byt5": {"name": "Byt5", "vocab_size": 50000, "encoding": "BPE"},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
}
|
|
|
|
| 9 |
"bloom": "bigscience/bloom-560m",
|
| 10 |
"aya-expanse": "CohereForAI/aya-expanse-8b",
|
| 11 |
"comma": "common-pile/comma-v0.1-2t",
|
|
|
|
| 12 |
"tokenmonster": "alasdairforsythe/tokenmonster",
|
| 13 |
"byt5": "google/byt5-small",
|
| 14 |
+
"phi-3": "microsoft/Phi-3-mini-4k-instruct",
|
| 15 |
+
"xglm": "facebook/xglm-564M",
|
| 16 |
+
"tekken": "mistralai/tekken",
|
| 17 |
+
"mbert": "google-bert/bert-base-multilingual-cased" ,
|
| 18 |
+
|
| 19 |
}
|
| 20 |
+
# "microsoft/Phi-3-mini-4k-instruct" "mistralai/tekken" "facebook/xglm-564M" "google-bert/bert-base-multilingual-cased"
|
| 21 |
|
| 22 |
|
| 23 |
TOKENIZER_INFO = {
|
| 24 |
"gpt-4": {"name": "GPT-4", "vocab_size": 100277, "encoding": "BPE"},
|
| 25 |
+
"gpt-4o": {"name": "GPT-4o", "vocab_size": 199997, "encoding": "BPE"},
|
| 26 |
"gpt-2": {"name": "GPT-2", "vocab_size": 50257, "encoding": "BPE"},
|
| 27 |
"llama-2": {"name": "LLaMA-2", "vocab_size": 32000, "encoding": "SentencePiece"},
|
| 28 |
"llama-3": {"name": "LLaMA-3", "vocab_size": 128000, "encoding": "SentencePiece"},
|
|
|
|
| 40 |
"byte-level": {"name": "Byte-Level BPE", "vocab_size": 50000, "encoding": "BPE"},
|
| 41 |
"tokenmonster": {"name": "TokenMonster", "vocab_size": 32000, "encoding": ""},
|
| 42 |
"byt5": {"name": "Byt5", "vocab_size": 50000, "encoding": "BPE"},
|
| 43 |
+
"phi-3": {"name": "Phi-3", "vocab_size": 32064, "encoding": "BPE"},
|
| 44 |
+
"xglm": {"name": "XGLM", "vocab_size": 256008, "encoding": "BPE"},
|
| 45 |
+
"tekken": {"name": "Tekken", "vocab_size": 32768, "encoding": "BPE"},
|
| 46 |
+
"mbert": {"name": "mBERT", "vocab_size": 119547, "encoding": "WordPiece"}
|
| 47 |
}
|
requirements.txt
CHANGED
|
@@ -4,4 +4,7 @@ transformers
|
|
| 4 |
torch
|
| 5 |
pandas
|
| 6 |
plotly
|
| 7 |
-
tokenmonster
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
torch
|
| 5 |
pandas
|
| 6 |
plotly
|
| 7 |
+
tokenmonster
|
| 8 |
+
mistral_common
|
| 9 |
+
protobuf
|
| 10 |
+
sentencepiece
|
utils.py
CHANGED
|
@@ -4,7 +4,7 @@ import traceback
|
|
| 4 |
import unicodedata
|
| 5 |
|
| 6 |
import tiktoken
|
| 7 |
-
from transformers import AutoTokenizer
|
| 8 |
|
| 9 |
from mappings import MODEL_MAP, TOKENIZER_INFO
|
| 10 |
|
|
@@ -74,40 +74,155 @@ def is_subword(token_text, model, is_first):
|
|
| 74 |
|
| 75 |
|
| 76 |
def tokenize_with_tiktoken(text, model):
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
| 79 |
|
| 80 |
token_data = []
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
token_data.append(
|
| 91 |
{
|
| 92 |
-
"text":
|
| 93 |
-
"id":
|
| 94 |
-
"type":
|
| 95 |
-
"is_subword":
|
| 96 |
-
"bytes": len(
|
| 97 |
-
"position":
|
| 98 |
}
|
| 99 |
)
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
token_data.append(
|
| 102 |
{
|
| 103 |
-
"text":
|
| 104 |
-
"id": 0,
|
| 105 |
-
"type":
|
| 106 |
-
"is_subword":
|
|
|
|
| 107 |
"position": len(token_data),
|
| 108 |
}
|
| 109 |
)
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
return {
|
| 112 |
"model": TOKENIZER_INFO[model]["name"],
|
| 113 |
"token_count": len(token_data),
|
|
@@ -142,81 +257,402 @@ def get_hf_tokenizer(model):
|
|
| 142 |
return tokenizer
|
| 143 |
|
| 144 |
|
| 145 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
try:
|
| 147 |
-
tokenizer =
|
|
|
|
|
|
|
|
|
|
| 148 |
token_data = []
|
| 149 |
for text_ in text.split("\n"):
|
| 150 |
-
text_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
encoding = tokenizer(
|
| 153 |
-
|
| 154 |
-
return_offsets_mapping=
|
| 155 |
return_tensors=None,
|
| 156 |
add_special_tokens=False,
|
| 157 |
)
|
| 158 |
-
|
| 159 |
token_ids = encoding["input_ids"]
|
| 160 |
tokens = tokenizer.convert_ids_to_tokens(token_ids)
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
| 186 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
return {
|
| 189 |
"model": TOKENIZER_INFO[model]["name"],
|
| 190 |
-
"token_count": len(
|
| 191 |
"tokens": token_data,
|
| 192 |
"compression_ratio": len(text) / len(token_data) if token_data else 0,
|
| 193 |
"encoding": TOKENIZER_INFO[model]["encoding"],
|
| 194 |
"vocab_size": TOKENIZER_INFO[model]["vocab_size"],
|
| 195 |
}
|
|
|
|
| 196 |
except Exception as e:
|
| 197 |
-
|
| 198 |
-
print(f"
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
return {
|
| 212 |
"model": TOKENIZER_INFO[model]["name"],
|
| 213 |
-
"token_count":
|
| 214 |
-
"tokens":
|
| 215 |
-
"compression_ratio": 0,
|
| 216 |
-
"encoding": "
|
| 217 |
-
"vocab_size":
|
| 218 |
-
"error": error_msg,
|
| 219 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
|
| 222 |
def normalize_text(text, method):
|
|
@@ -229,6 +665,8 @@ def normalize_text(text, method):
|
|
| 229 |
return unicodedata.normalize("NFC", text)
|
| 230 |
elif method == "nfd":
|
| 231 |
return unicodedata.normalize("NFD", text)
|
|
|
|
|
|
|
| 232 |
elif method == "nfkc":
|
| 233 |
return unicodedata.normalize("NFKC", text)
|
| 234 |
elif method == "nfkd":
|
|
@@ -253,9 +691,37 @@ def get_normalization_methods():
|
|
| 253 |
("lowercase", "Lowercase"),
|
| 254 |
("nfc", "Unicode NFC (Canonical)"),
|
| 255 |
("nfd", "Unicode NFD (Decomposed)"),
|
|
|
|
| 256 |
("nfkc", "Unicode NFKC (Compatible)"),
|
| 257 |
("nfkd", "Unicode NFKD (Compatible Decomposed)"),
|
| 258 |
("strip_accents", "Remove Accents"),
|
| 259 |
("strip_punctuation", "Remove Punctuation"),
|
| 260 |
("whitespace_normalize", "Normalize Whitespace"),
|
| 261 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import unicodedata
|
| 5 |
|
| 6 |
import tiktoken
|
| 7 |
+
from transformers import AutoTokenizer, XGLMTokenizerFast
|
| 8 |
|
| 9 |
from mappings import MODEL_MAP, TOKENIZER_INFO
|
| 10 |
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
def tokenize_with_tiktoken(text, model):
|
| 77 |
+
enc = tiktoken.encoding_for_model(model)
|
| 78 |
+
|
| 79 |
+
# Process the entire text at once, not line by line
|
| 80 |
+
token_ids = enc.encode(text)
|
| 81 |
|
| 82 |
token_data = []
|
| 83 |
+
current_text_pos = 0
|
| 84 |
+
|
| 85 |
+
# Build character-to-token mapping
|
| 86 |
+
char_to_tokens = {}
|
| 87 |
+
|
| 88 |
+
# Decode each token and find its position in the original text
|
| 89 |
+
for i, token_id in enumerate(token_ids):
|
| 90 |
+
token_text = enc.decode([token_id])
|
| 91 |
+
|
| 92 |
+
# Find where this token appears in the remaining text
|
| 93 |
+
remaining_text = text[current_text_pos:]
|
| 94 |
+
|
| 95 |
+
if token_text in remaining_text:
|
| 96 |
+
# Find the position of this token in the original text
|
| 97 |
+
local_pos = remaining_text.find(token_text)
|
| 98 |
+
actual_start = current_text_pos + local_pos
|
| 99 |
+
actual_end = actual_start + len(token_text)
|
| 100 |
+
|
| 101 |
+
# Map each character position to this token
|
| 102 |
+
for char_pos in range(actual_start, actual_end):
|
| 103 |
+
if char_pos not in char_to_tokens:
|
| 104 |
+
char_to_tokens[char_pos] = []
|
| 105 |
+
char_to_tokens[char_pos].append(token_id)
|
| 106 |
+
|
| 107 |
+
current_text_pos = actual_end
|
| 108 |
+
|
| 109 |
+
# Group consecutive characters that have the same token ID sets
|
| 110 |
+
processed_chars = set()
|
| 111 |
+
text_pos = 0
|
| 112 |
|
| 113 |
+
while text_pos < len(text):
|
| 114 |
+
if text_pos in processed_chars:
|
| 115 |
+
text_pos += 1
|
| 116 |
+
continue
|
| 117 |
|
| 118 |
+
# Get tokens for current character
|
| 119 |
+
current_tokens = char_to_tokens.get(text_pos, [])
|
| 120 |
+
|
| 121 |
+
if not current_tokens:
|
| 122 |
+
# Handle characters not covered by any token
|
| 123 |
token_data.append(
|
| 124 |
{
|
| 125 |
+
"text": text[text_pos],
|
| 126 |
+
"id": None,
|
| 127 |
+
"type": get_token_type(text[text_pos]),
|
| 128 |
+
"is_subword": False,
|
| 129 |
+
"bytes": len(text[text_pos].encode("utf-8")),
|
| 130 |
+
"position": len(token_data),
|
| 131 |
}
|
| 132 |
)
|
| 133 |
+
processed_chars.add(text_pos)
|
| 134 |
+
text_pos += 1
|
| 135 |
+
continue
|
| 136 |
+
|
| 137 |
+
# Find the span of characters that share the same token ID set
|
| 138 |
+
span_start = text_pos
|
| 139 |
+
span_end = text_pos + 1
|
| 140 |
+
|
| 141 |
+
# Extend span while characters have the same token set
|
| 142 |
+
while (
|
| 143 |
+
span_end < len(text)
|
| 144 |
+
and span_end in char_to_tokens
|
| 145 |
+
and char_to_tokens[span_end] == current_tokens
|
| 146 |
+
):
|
| 147 |
+
span_end += 1
|
| 148 |
+
|
| 149 |
+
# Get the text for this span
|
| 150 |
+
span_text = text[span_start:span_end]
|
| 151 |
+
|
| 152 |
+
# Create token data entry
|
| 153 |
token_data.append(
|
| 154 |
{
|
| 155 |
+
"text": span_text,
|
| 156 |
+
"id": current_tokens if len(current_tokens) > 1 else current_tokens[0],
|
| 157 |
+
"type": get_token_type(span_text),
|
| 158 |
+
"is_subword": is_subword(span_text, model, len(token_data) == 0),
|
| 159 |
+
"bytes": len(span_text.encode("utf-8")),
|
| 160 |
"position": len(token_data),
|
| 161 |
}
|
| 162 |
)
|
| 163 |
|
| 164 |
+
# Mark all characters in this span as processed
|
| 165 |
+
for pos in range(span_start, span_end):
|
| 166 |
+
processed_chars.add(pos)
|
| 167 |
+
|
| 168 |
+
text_pos = span_end
|
| 169 |
+
|
| 170 |
+
return {
|
| 171 |
+
"model": TOKENIZER_INFO[model]["name"],
|
| 172 |
+
"token_count": len(token_ids),
|
| 173 |
+
"tokens": token_data,
|
| 174 |
+
"compression_ratio": len(text) / len(token_data) if token_data else 0,
|
| 175 |
+
"encoding": TOKENIZER_INFO[model]["encoding"],
|
| 176 |
+
"vocab_size": TOKENIZER_INFO[model]["vocab_size"],
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def tokenize_with_tiktoke1n(text, model):
|
| 181 |
+
encoding = "cl100k_base" if model == "gpt-4" else "gpt2"
|
| 182 |
+
enc = tiktoken.get_encoding(encoding)
|
| 183 |
+
|
| 184 |
+
token_data = []
|
| 185 |
+
current_pos = 0
|
| 186 |
+
text_ = text
|
| 187 |
+
for text in text_.split("\n"):
|
| 188 |
+
tokens = enc.encode(text + "\n")
|
| 189 |
+
|
| 190 |
+
# token_text = enc.decode([token_id])
|
| 191 |
+
# token_type = get_token_type(token_text)
|
| 192 |
+
# subword = is_subword(token_text, model, i == 0)
|
| 193 |
+
|
| 194 |
+
token_ids = encoding["input_ids"]
|
| 195 |
+
## offset in the text for each token, i.e. token i covers text[offsets[i][0]:offsets[i][1]]
|
| 196 |
+
offsets = encoding.get("offset_mapping", [])
|
| 197 |
+
|
| 198 |
+
token_data = []
|
| 199 |
+
curr_tok_id = 0
|
| 200 |
+
current_text_pos = 0
|
| 201 |
+
token_id = []
|
| 202 |
+
while curr_tok_id < len(token_ids) and curr_tok_id < len(tokens):
|
| 203 |
+
if offsets and curr_tok_id < len(offsets):
|
| 204 |
+
start, end = offsets[curr_tok_id]
|
| 205 |
+
actual_text = text[start:end]
|
| 206 |
+
if current_text_pos == end:
|
| 207 |
+
token_id.append(token_ids[curr_tok_id])
|
| 208 |
+
else:
|
| 209 |
+
token_id = [token_ids[curr_tok_id]]
|
| 210 |
+
token_type = get_token_type(actual_text)
|
| 211 |
+
subword = is_subword(actual_text, model, curr_tok_id == 0)
|
| 212 |
+
if current_text_pos != end:
|
| 213 |
+
token_data.append(
|
| 214 |
+
{
|
| 215 |
+
"text": actual_text,
|
| 216 |
+
"id": token_id,
|
| 217 |
+
"type": token_type,
|
| 218 |
+
"is_subword": subword,
|
| 219 |
+
"bytes": len(actual_text.encode("utf-8")),
|
| 220 |
+
"position": curr_tok_id,
|
| 221 |
+
}
|
| 222 |
+
)
|
| 223 |
+
curr_tok_id += 1
|
| 224 |
+
current_text_pos = end
|
| 225 |
+
|
| 226 |
return {
|
| 227 |
"model": TOKENIZER_INFO[model]["name"],
|
| 228 |
"token_count": len(token_data),
|
|
|
|
| 257 |
return tokenizer
|
| 258 |
|
| 259 |
|
| 260 |
+
def get_tokenizer(model):
|
| 261 |
+
# import code; code.interact(local=locals()|globals())
|
| 262 |
+
model_name = MODEL_MAP.get(model, None)
|
| 263 |
+
if model_name is None:
|
| 264 |
+
raise ValueError(f"Unknown tokenizer code {model_name}")
|
| 265 |
+
print(model_name)
|
| 266 |
+
if model_name in TOKENIZER_CACHE:
|
| 267 |
+
return TOKENIZER_CACHE[model_name]
|
| 268 |
+
|
| 269 |
+
# Get token from environment
|
| 270 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 271 |
+
if not hf_token:
|
| 272 |
+
return {
|
| 273 |
+
"model": TOKENIZER_INFO[model]["name"],
|
| 274 |
+
"token_count": 0,
|
| 275 |
+
"tokens": [],
|
| 276 |
+
"error": "HF_TOKEN not found in environment. Please add your HuggingFace token to Space secrets.",
|
| 277 |
+
}
|
| 278 |
+
if "tekken" in model_name:
|
| 279 |
+
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
| 280 |
+
|
| 281 |
+
tok = MistralTokenizer.v3(is_tekken=True)
|
| 282 |
+
tokenizer = tok.instruct_tokenizer.tokenizer
|
| 283 |
+
elif "tokenmonster" in model_name:
|
| 284 |
+
tokenizer = TokenMonsterTokenizer("englishcode-32000-consistent-v1")
|
| 285 |
+
elif "xglm" in model_name.lower():
|
| 286 |
+
# tokenizer = AutoTokenizer.from_pretrained(
|
| 287 |
+
tokenizer = XGLMTokenizerFast.from_pretrained(
|
| 288 |
+
model_name, token=hf_token, trust_remote_code=True,# use_fast=False
|
| 289 |
+
)
|
| 290 |
+
else:
|
| 291 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 292 |
+
model_name, token=hf_token, trust_remote_code=True
|
| 293 |
+
)
|
| 294 |
+
TOKENIZER_CACHE[model_name] = tokenizer
|
| 295 |
+
return tokenizer
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def tokenize_w_tekken(text, model):
|
| 300 |
+
tokenizer = get_tokenizer(model)
|
| 301 |
+
|
| 302 |
+
# Process the entire text at once, not line by line
|
| 303 |
+
token_ids = tokenizer.encode(text, bos=False, eos=False)
|
| 304 |
+
|
| 305 |
+
token_data = []
|
| 306 |
+
current_text_pos = 0
|
| 307 |
+
|
| 308 |
+
# Build character-to-token mapping
|
| 309 |
+
char_to_tokens = {}
|
| 310 |
+
|
| 311 |
+
# Decode each token and find its position in the original text
|
| 312 |
+
for i, token_id in enumerate(token_ids):
|
| 313 |
+
token_text = tokenizer.decode([token_id])
|
| 314 |
+
|
| 315 |
+
# Find where this token appears in the remaining text
|
| 316 |
+
remaining_text = text[current_text_pos:]
|
| 317 |
+
|
| 318 |
+
if token_text in remaining_text:
|
| 319 |
+
# Find the position of this token in the original text
|
| 320 |
+
local_pos = remaining_text.find(token_text)
|
| 321 |
+
actual_start = current_text_pos + local_pos
|
| 322 |
+
actual_end = actual_start + len(token_text)
|
| 323 |
+
|
| 324 |
+
# Map each character position to this token
|
| 325 |
+
for char_pos in range(actual_start, actual_end):
|
| 326 |
+
if char_pos not in char_to_tokens:
|
| 327 |
+
char_to_tokens[char_pos] = []
|
| 328 |
+
char_to_tokens[char_pos].append(token_id)
|
| 329 |
+
|
| 330 |
+
current_text_pos = actual_end
|
| 331 |
+
|
| 332 |
+
# Group consecutive characters that have the same token ID sets
|
| 333 |
+
processed_chars = set()
|
| 334 |
+
text_pos = 0
|
| 335 |
+
|
| 336 |
+
while text_pos < len(text):
|
| 337 |
+
if text_pos in processed_chars:
|
| 338 |
+
text_pos += 1
|
| 339 |
+
continue
|
| 340 |
+
|
| 341 |
+
# Get tokens for current character
|
| 342 |
+
current_tokens = char_to_tokens.get(text_pos, [])
|
| 343 |
+
|
| 344 |
+
if not current_tokens:
|
| 345 |
+
# Handle characters not covered by any token
|
| 346 |
+
token_data.append(
|
| 347 |
+
{
|
| 348 |
+
"text": text[text_pos],
|
| 349 |
+
"id": None,
|
| 350 |
+
"type": get_token_type(text[text_pos]),
|
| 351 |
+
"is_subword": False,
|
| 352 |
+
"bytes": len(text[text_pos].encode("utf-8")),
|
| 353 |
+
"position": len(token_data),
|
| 354 |
+
}
|
| 355 |
+
)
|
| 356 |
+
processed_chars.add(text_pos)
|
| 357 |
+
text_pos += 1
|
| 358 |
+
continue
|
| 359 |
+
|
| 360 |
+
# Find the span of characters that share the same token ID set
|
| 361 |
+
span_start = text_pos
|
| 362 |
+
span_end = text_pos + 1
|
| 363 |
+
|
| 364 |
+
# Extend span while characters have the same token set
|
| 365 |
+
while (
|
| 366 |
+
span_end < len(text)
|
| 367 |
+
and span_end in char_to_tokens
|
| 368 |
+
and char_to_tokens[span_end] == current_tokens
|
| 369 |
+
):
|
| 370 |
+
span_end += 1
|
| 371 |
+
|
| 372 |
+
# Get the text for this span
|
| 373 |
+
span_text = text[span_start:span_end]
|
| 374 |
+
|
| 375 |
+
# Create token data entry
|
| 376 |
+
token_data.append(
|
| 377 |
+
{
|
| 378 |
+
"text": span_text,
|
| 379 |
+
"id": current_tokens if len(current_tokens) > 1 else current_tokens[0],
|
| 380 |
+
"type": get_token_type(span_text),
|
| 381 |
+
"is_subword": is_subword(span_text, model, len(token_data) == 0),
|
| 382 |
+
"bytes": len(span_text.encode("utf-8")),
|
| 383 |
+
"position": len(token_data),
|
| 384 |
+
}
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
# Mark all characters in this span as processed
|
| 388 |
+
for pos in range(span_start, span_end):
|
| 389 |
+
processed_chars.add(pos)
|
| 390 |
+
|
| 391 |
+
text_pos = span_end
|
| 392 |
+
|
| 393 |
+
return {
|
| 394 |
+
"model": TOKENIZER_INFO[model]["name"],
|
| 395 |
+
"token_count": len(token_ids),
|
| 396 |
+
"tokens": token_data,
|
| 397 |
+
"compression_ratio": len(text) / len(token_data) if token_data else 0,
|
| 398 |
+
"encoding": TOKENIZER_INFO[model]["encoding"],
|
| 399 |
+
"vocab_size": TOKENIZER_INFO[model]["vocab_size"],
|
| 400 |
+
}
|
| 401 |
+
def tokenize_w_tekken1(text, model):
|
| 402 |
try:
|
| 403 |
+
tokenizer = get_tokenizer(model)
|
| 404 |
+
|
| 405 |
+
text_ = text
|
| 406 |
+
index = 0
|
| 407 |
token_data = []
|
| 408 |
for text_ in text.split("\n"):
|
| 409 |
+
text_ += "\n"
|
| 410 |
+
token_ids = tokenizer.encode(text_, bos=False, eos=False)
|
| 411 |
+
tokens = [tokenizer.decode([tok]) for tok in token_ids]
|
| 412 |
+
# import code; code.interact(local=locals()|globals())
|
| 413 |
+
for i, tok in enumerate(tokens):
|
| 414 |
+
tok = tok[0].encode("utf-8")
|
| 415 |
+
# token_type = get_token_type(tok)
|
| 416 |
+
token_type=None
|
| 417 |
+
# subword = is_subword(tok, tokenizer, is_first=index == 0)
|
| 418 |
+
subword=False
|
| 419 |
+
token_data.append(
|
| 420 |
+
{
|
| 421 |
+
"text": tok,
|
| 422 |
+
"id": token_ids[i],
|
| 423 |
+
"type": token_type,
|
| 424 |
+
"is_subword": subword,
|
| 425 |
+
"bytes": len(tok),
|
| 426 |
+
"position": index,
|
| 427 |
+
}
|
| 428 |
+
)
|
| 429 |
+
index += 1
|
| 430 |
+
# import code; code.interact(local=locals()|globals())
|
| 431 |
+
|
| 432 |
+
return {
|
| 433 |
+
"model": TOKENIZER_INFO[model]["name"],
|
| 434 |
+
"token_count": index,
|
| 435 |
+
"tokens": token_data,
|
| 436 |
+
"compression_ratio": len(text) / len(token_data) if token_data else 0,
|
| 437 |
+
"encoding": TOKENIZER_INFO[model]["encoding"],
|
| 438 |
+
"vocab_size": TOKENIZER_INFO[model]["vocab_size"],
|
| 439 |
+
}
|
| 440 |
+
|
| 441 |
+
except Exception as e:
|
| 442 |
+
# Your existing error handling...
|
| 443 |
+
print(f"Error: {e}")
|
| 444 |
+
pass
|
| 445 |
+
|
| 446 |
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
# Alternative version if you really need line-by-line processing:
|
| 450 |
+
def tokenize_with_hf(text, model):
|
| 451 |
+
try:
|
| 452 |
+
tokenizer = get_tokenizer(model)
|
| 453 |
+
|
| 454 |
+
all_token_data = []
|
| 455 |
+
global_position = 0
|
| 456 |
+
text_offset = 0
|
| 457 |
+
|
| 458 |
+
# Process line by line but accumulate results
|
| 459 |
+
for line in text.split("\n"):
|
| 460 |
+
line_with_newline = line + "\n"
|
| 461 |
+
|
| 462 |
encoding = tokenizer(
|
| 463 |
+
line_with_newline,
|
| 464 |
+
return_offsets_mapping=True,
|
| 465 |
return_tensors=None,
|
| 466 |
add_special_tokens=False,
|
| 467 |
)
|
|
|
|
| 468 |
token_ids = encoding["input_ids"]
|
| 469 |
tokens = tokenizer.convert_ids_to_tokens(token_ids)
|
| 470 |
+
offsets = encoding.get("offset_mapping", [])
|
| 471 |
+
|
| 472 |
+
# Process tokens for this line
|
| 473 |
+
for i in range(len(token_ids)):
|
| 474 |
+
if i < len(offsets) and offsets[i] is not None:
|
| 475 |
+
start, end = offsets[i]
|
| 476 |
+
actual_text = line_with_newline[start:end]
|
| 477 |
+
else:
|
| 478 |
+
actual_text = tokens[i] if i < len(tokens) else ""
|
| 479 |
+
|
| 480 |
+
if not actual_text:
|
| 481 |
+
continue
|
| 482 |
+
|
| 483 |
+
token_type = get_token_type(actual_text)
|
| 484 |
+
subword = is_subword(actual_text, model, global_position == 0)
|
| 485 |
+
|
| 486 |
+
all_token_data.append({
|
| 487 |
+
# "text": actual_text,
|
| 488 |
+
"text": tokens[i],
|
| 489 |
+
"id": [token_ids[i]],
|
| 490 |
+
"type": token_type,
|
| 491 |
+
"is_subword": subword,
|
| 492 |
+
"bytes": len(actual_text.encode("utf-8")),
|
| 493 |
+
"position": global_position,
|
| 494 |
+
})
|
| 495 |
+
global_position += 1
|
| 496 |
+
|
| 497 |
+
text_offset += len(line_with_newline)
|
| 498 |
+
|
| 499 |
+
# Calculate total token count
|
| 500 |
+
total_tokens = sum(len(encoding["input_ids"]) for encoding in [
|
| 501 |
+
tokenizer(text, return_tensors=None, add_special_tokens=False)
|
| 502 |
+
])
|
| 503 |
|
| 504 |
+
return {
|
| 505 |
+
"model": TOKENIZER_INFO[model]["name"],
|
| 506 |
+
"token_count": total_tokens,
|
| 507 |
+
"tokens": all_token_data,
|
| 508 |
+
"compression_ratio": len(text) / len(all_token_data) if all_token_data else 0,
|
| 509 |
+
"encoding": TOKENIZER_INFO[model]["encoding"],
|
| 510 |
+
"vocab_size": TOKENIZER_INFO[model]["vocab_size"],
|
| 511 |
+
}
|
| 512 |
|
| 513 |
+
except Exception as e:
|
| 514 |
+
print(f"Error: {e}")
|
| 515 |
+
import traceback
|
| 516 |
+
traceback.print_exc()
|
| 517 |
+
return None
|
| 518 |
+
def tokenize_with_hfold(text, model):
|
| 519 |
+
try:
|
| 520 |
+
tokenizer = get_hf_tokenizer(model)
|
| 521 |
+
|
| 522 |
+
# Process the ENTIRE text at once, not line by line
|
| 523 |
+
text_ = text
|
| 524 |
+
token_data = []
|
| 525 |
+
for text_ in text.split("\n"):
|
| 526 |
+
text_ += "\n"
|
| 527 |
+
encoding = tokenizer(
|
| 528 |
+
text, # Use original text, not line by line
|
| 529 |
+
return_offsets_mapping=True,
|
| 530 |
+
return_tensors=None,
|
| 531 |
+
add_special_tokens=False,
|
| 532 |
)
|
| 533 |
+
token_ids = encoding["input_ids"]
|
| 534 |
+
tokens = tokenizer.convert_ids_to_tokens(token_ids)
|
| 535 |
+
## offset in the text for each token, i.e. token i covers text[offsets[i][0]:offsets[i][1]]
|
| 536 |
+
offsets = encoding.get("offset_mapping", [])
|
| 537 |
+
|
| 538 |
+
curr_tok_id = 0
|
| 539 |
+
current_text_pos = 0
|
| 540 |
+
token_id = []
|
| 541 |
+
while curr_tok_id < len(token_ids) and curr_tok_id < len(tokens):
|
| 542 |
+
if offsets and curr_tok_id < len(offsets):
|
| 543 |
+
start, end = offsets[curr_tok_id]
|
| 544 |
+
actual_text = text[start:end]
|
| 545 |
+
if current_text_pos == end:
|
| 546 |
+
token_id.append(token_ids[curr_tok_id])
|
| 547 |
+
else:
|
| 548 |
+
token_id = [token_ids[curr_tok_id]]
|
| 549 |
+
token_type = get_token_type(actual_text)
|
| 550 |
+
subword = is_subword(actual_text, model, curr_tok_id == 0)
|
| 551 |
+
if current_text_pos != end:
|
| 552 |
+
token_data.append(
|
| 553 |
+
{
|
| 554 |
+
"text": actual_text,
|
| 555 |
+
"id": token_id,
|
| 556 |
+
"type": token_type,
|
| 557 |
+
"is_subword": subword,
|
| 558 |
+
"bytes": len(actual_text.encode("utf-8")),
|
| 559 |
+
"position": curr_tok_id,
|
| 560 |
+
}
|
| 561 |
+
)
|
| 562 |
+
current_text_pos = end
|
| 563 |
+
else:
|
| 564 |
+
token_data.append(
|
| 565 |
+
{
|
| 566 |
+
"text": tokens[curr_tok_id],
|
| 567 |
+
"id": [token_ids[curr_tok_id]],
|
| 568 |
+
"type": get_token_type(tokens[curr_tok_id]),
|
| 569 |
+
"is_subword": is_subword(tokens[curr_tok_id]),
|
| 570 |
+
"bytes": len(tokens[curr_tok_id].encode("utf-8")),
|
| 571 |
+
"position": curr_tok_id,
|
| 572 |
+
}
|
| 573 |
+
)
|
| 574 |
+
curr_tok_id += 1
|
| 575 |
|
| 576 |
return {
|
| 577 |
"model": TOKENIZER_INFO[model]["name"],
|
| 578 |
+
"token_count": len(token_ids),
|
| 579 |
"tokens": token_data,
|
| 580 |
"compression_ratio": len(text) / len(token_data) if token_data else 0,
|
| 581 |
"encoding": TOKENIZER_INFO[model]["encoding"],
|
| 582 |
"vocab_size": TOKENIZER_INFO[model]["vocab_size"],
|
| 583 |
}
|
| 584 |
+
|
| 585 |
except Exception as e:
|
| 586 |
+
# Your existing error handling...
|
| 587 |
+
print(f"Error: {e}")
|
| 588 |
+
pass
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
def tokenize_with_byt5(text, model):
|
| 593 |
+
"""Special handling for ByT5 byte-level tokenizer"""
|
| 594 |
+
try:
|
| 595 |
+
tokenizer = get_hf_tokenizer(model)
|
| 596 |
+
# ByT5 doesn't support offset_mapping, so we handle it differently
|
| 597 |
+
encoding = tokenizer(
|
| 598 |
+
text,
|
| 599 |
+
return_tensors=None,
|
| 600 |
+
add_special_tokens=False,
|
| 601 |
+
)
|
| 602 |
+
token_ids = encoding["input_ids"]
|
| 603 |
+
|
| 604 |
+
# For ByT5, each token represents a byte
|
| 605 |
+
text_bytes = text.encode('utf-8')
|
| 606 |
+
token_data = []
|
| 607 |
+
|
| 608 |
+
for i, token_id in enumerate(token_ids):
|
| 609 |
+
# Decode individual token
|
| 610 |
+
try:
|
| 611 |
+
token_text = tokenizer.decode([token_id])
|
| 612 |
+
|
| 613 |
+
# For ByT5, tokens often correspond to individual bytes/characters
|
| 614 |
+
if i < len(text_bytes):
|
| 615 |
+
# Get the actual byte this token represents
|
| 616 |
+
byte_val = text_bytes[i]
|
| 617 |
+
actual_char = chr(byte_val) if byte_val < 128 else text_bytes[i:i+1].decode('utf-8', errors='replace')
|
| 618 |
+
else:
|
| 619 |
+
actual_char = token_text
|
| 620 |
+
|
| 621 |
+
token_type = get_token_type(actual_char)
|
| 622 |
+
subword = is_subword(actual_char, model, i == 0)
|
| 623 |
+
|
| 624 |
+
token_data.append({
|
| 625 |
+
"text": actual_char,
|
| 626 |
+
"id": [token_id],
|
| 627 |
+
"type": token_type,
|
| 628 |
+
"is_subword": subword,
|
| 629 |
+
"bytes": len(actual_char.encode("utf-8")),
|
| 630 |
+
"position": i,
|
| 631 |
+
})
|
| 632 |
+
|
| 633 |
+
except Exception as e:
|
| 634 |
+
# Handle special tokens or decoding issues
|
| 635 |
+
token_data.append({
|
| 636 |
+
"text": f"<special_token_{token_id}>",
|
| 637 |
+
"id": [token_id],
|
| 638 |
+
"type": "special",
|
| 639 |
+
"is_subword": False,
|
| 640 |
+
"bytes": 0,
|
| 641 |
+
"position": i,
|
| 642 |
+
})
|
| 643 |
|
| 644 |
return {
|
| 645 |
"model": TOKENIZER_INFO[model]["name"],
|
| 646 |
+
"token_count": len(token_ids),
|
| 647 |
+
"tokens": token_data,
|
| 648 |
+
"compression_ratio": len(text) / len(token_data) if token_data else 0,
|
| 649 |
+
"encoding": TOKENIZER_INFO[model]["encoding"],
|
| 650 |
+
"vocab_size": TOKENIZER_INFO[model]["vocab_size"],
|
|
|
|
| 651 |
}
|
| 652 |
+
|
| 653 |
+
except Exception as e:
|
| 654 |
+
print(f"Error in ByT5 tokenization: {e}")
|
| 655 |
+
return None
|
| 656 |
|
| 657 |
|
| 658 |
def normalize_text(text, method):
|
|
|
|
| 665 |
return unicodedata.normalize("NFC", text)
|
| 666 |
elif method == "nfd":
|
| 667 |
return unicodedata.normalize("NFD", text)
|
| 668 |
+
elif method == "nfk":
|
| 669 |
+
return unicodedata.normalize("NFK", text)
|
| 670 |
elif method == "nfkc":
|
| 671 |
return unicodedata.normalize("NFKC", text)
|
| 672 |
elif method == "nfkd":
|
|
|
|
| 691 |
("lowercase", "Lowercase"),
|
| 692 |
("nfc", "Unicode NFC (Canonical)"),
|
| 693 |
("nfd", "Unicode NFD (Decomposed)"),
|
| 694 |
+
("nfk", ""),
|
| 695 |
("nfkc", "Unicode NFKC (Compatible)"),
|
| 696 |
("nfkd", "Unicode NFKD (Compatible Decomposed)"),
|
| 697 |
("strip_accents", "Remove Accents"),
|
| 698 |
("strip_punctuation", "Remove Punctuation"),
|
| 699 |
("whitespace_normalize", "Normalize Whitespace"),
|
| 700 |
]
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
def clean_token_display(token_text, tokenizer=None):
|
| 704 |
+
"""Clean up token display to avoid ? characters"""
|
| 705 |
+
if token_text == "\n" or token_text == "<newline> ":
|
| 706 |
+
return "<newline>"
|
| 707 |
+
# Handle common prefixes
|
| 708 |
+
if token_text.startswith("Ġ"): # GPT-2 style
|
| 709 |
+
return " " + token_text[1:]
|
| 710 |
+
elif token_text.startswith("▁"): # SentencePiece style
|
| 711 |
+
return " " + token_text[1:]
|
| 712 |
+
|
| 713 |
+
# Handle byte-level representations
|
| 714 |
+
if token_text.startswith("<0x") and token_text.endswith(">"):
|
| 715 |
+
try:
|
| 716 |
+
# Convert hex byte to character
|
| 717 |
+
hex_val = token_text[3:-1]
|
| 718 |
+
byte_val = int(hex_val, 16)
|
| 719 |
+
return chr(byte_val) if 32 <= byte_val <= 126 else f"[{hex_val}]"
|
| 720 |
+
except:
|
| 721 |
+
return token_text
|
| 722 |
+
|
| 723 |
+
# Handle other special cases
|
| 724 |
+
if "�" in token_text: # Unicode replacement character
|
| 725 |
+
return token_text.replace("�", "?")
|
| 726 |
+
|
| 727 |
+
return token_text
|