Spaces:
Sleeping
Sleeping
Upload HF_TRAINING_GUIDE.md with huggingface_hub
Browse files- HF_TRAINING_GUIDE.md +413 -0
HF_TRAINING_GUIDE.md
ADDED
|
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Training DTLN with Hugging Face Datasets
|
| 2 |
+
|
| 3 |
+
Complete guide for training a production-quality voice denoising model using real datasets from Hugging Face Hub.
|
| 4 |
+
|
| 5 |
+
## Overview
|
| 6 |
+
|
| 7 |
+
This guide shows you how to train the DTLN (Dual-signal Transformation LSTM Network) model using:
|
| 8 |
+
- **Clean Speech**: LibriSpeech, Common Voice, or other speech datasets
|
| 9 |
+
- **Noise**: DNS Challenge, FSD50K, or environmental noise datasets
|
| 10 |
+
- **Quantization-Aware Training (QAT)**: For efficient INT8 deployment
|
| 11 |
+
- **TensorFlow Lite**: For edge deployment
|
| 12 |
+
|
| 13 |
+
## Quick Start
|
| 14 |
+
|
| 15 |
+
### 1. Install Dependencies
|
| 16 |
+
|
| 17 |
+
```bash
|
| 18 |
+
pip install -r training_requirements.txt
|
| 19 |
+
```
|
| 20 |
+
|
| 21 |
+
### 2. Train with Default Settings (LibriSpeech + DNS Challenge)
|
| 22 |
+
|
| 23 |
+
```bash
|
| 24 |
+
python train_with_hf_datasets.py \
|
| 25 |
+
--epochs 50 \
|
| 26 |
+
--batch-size 16 \
|
| 27 |
+
--samples-per-epoch 1000 \
|
| 28 |
+
--lstm-units 128 \
|
| 29 |
+
--output-dir ./models
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
This will:
|
| 33 |
+
- Download LibriSpeech clean speech (train.clean.100 split)
|
| 34 |
+
- Download DNS Challenge noise dataset
|
| 35 |
+
- Train for 50 epochs with quantization-aware training
|
| 36 |
+
- Save best model to `./models/best_model.h5`
|
| 37 |
+
|
| 38 |
+
### 3. Convert to TensorFlow Lite
|
| 39 |
+
|
| 40 |
+
```bash
|
| 41 |
+
python convert_to_tflite.py \
|
| 42 |
+
--model ./models/best_model.h5 \
|
| 43 |
+
--output ./models/dtln_int8.tflite \
|
| 44 |
+
--calibration-dir ./calibration_data
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
## Available Datasets
|
| 48 |
+
|
| 49 |
+
### Clean Speech Datasets
|
| 50 |
+
|
| 51 |
+
#### LibriSpeech (Default)
|
| 52 |
+
- **Dataset**: `librispeech_asr`
|
| 53 |
+
- **Split**: `train.clean.100` (100 hours) or `train.clean.360` (360 hours)
|
| 54 |
+
- **Language**: English
|
| 55 |
+
- **Quality**: High-quality read speech
|
| 56 |
+
|
| 57 |
+
```bash
|
| 58 |
+
python train_with_hf_datasets.py \
|
| 59 |
+
--clean-dataset librispeech_asr \
|
| 60 |
+
--clean-split train.clean.100
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
#### Common Voice
|
| 64 |
+
- **Dataset**: `mozilla-foundation/common_voice_11_0`
|
| 65 |
+
- **Split**: `train`
|
| 66 |
+
- **Language**: Multiple (specify with config, e.g., "en")
|
| 67 |
+
- **Quality**: User-contributed speech
|
| 68 |
+
|
| 69 |
+
```bash
|
| 70 |
+
python train_with_hf_datasets.py \
|
| 71 |
+
--clean-dataset "mozilla-foundation/common_voice_11_0" \
|
| 72 |
+
--clean-split train
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
#### VoxPopuli
|
| 76 |
+
- **Dataset**: `facebook/voxpopuli`
|
| 77 |
+
- **Split**: `train`
|
| 78 |
+
- **Language**: Multiple European languages
|
| 79 |
+
- **Quality**: European Parliament recordings
|
| 80 |
+
|
| 81 |
+
#### Other Options
|
| 82 |
+
- `google/fleurs` - Multilingual speech
|
| 83 |
+
- `facebook/multilingual_librispeech` - Multiple languages
|
| 84 |
+
- Any HF dataset with audio column
|
| 85 |
+
|
| 86 |
+
### Noise Datasets
|
| 87 |
+
|
| 88 |
+
#### DNS Challenge (Default)
|
| 89 |
+
- **Dataset**: `dns-challenge/dns-challenge-4`
|
| 90 |
+
- **Split**: `train`
|
| 91 |
+
- **Content**: Diverse environmental noises
|
| 92 |
+
|
| 93 |
+
```bash
|
| 94 |
+
python train_with_hf_datasets.py \
|
| 95 |
+
--noise-dataset "dns-challenge/dns-challenge-4" \
|
| 96 |
+
--noise-split train
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
#### FSD50K (Freesound Dataset)
|
| 100 |
+
- **Dataset**: `Fhrozen/FSD50k`
|
| 101 |
+
- **Split**: `train`
|
| 102 |
+
- **Content**: 50,000+ sound events
|
| 103 |
+
|
| 104 |
+
#### WHAM! Noise
|
| 105 |
+
- **Dataset**: `JorisCos/WHAM`
|
| 106 |
+
- **Split**: `train`
|
| 107 |
+
- **Content**: Ambient noise samples
|
| 108 |
+
|
| 109 |
+
#### Create Your Own
|
| 110 |
+
If a noise dataset isn't available, the script will fall back to synthetic white noise.
|
| 111 |
+
|
| 112 |
+
## Training Configuration
|
| 113 |
+
|
| 114 |
+
### Basic Training
|
| 115 |
+
|
| 116 |
+
```bash
|
| 117 |
+
python train_with_hf_datasets.py \
|
| 118 |
+
--clean-dataset librispeech_asr \
|
| 119 |
+
--noise-dataset "dns-challenge/dns-challenge-4" \
|
| 120 |
+
--epochs 50 \
|
| 121 |
+
--batch-size 16 \
|
| 122 |
+
--samples-per-epoch 1000
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
### Advanced Training
|
| 126 |
+
|
| 127 |
+
```bash
|
| 128 |
+
python train_with_hf_datasets.py \
|
| 129 |
+
--clean-dataset librispeech_asr \
|
| 130 |
+
--clean-split train.clean.360 \
|
| 131 |
+
--noise-dataset "dns-challenge/dns-challenge-4" \
|
| 132 |
+
--noise-split train \
|
| 133 |
+
--epochs 100 \
|
| 134 |
+
--batch-size 32 \
|
| 135 |
+
--samples-per-epoch 5000 \
|
| 136 |
+
--lstm-units 128 \
|
| 137 |
+
--learning-rate 0.001 \
|
| 138 |
+
--output-dir ./models/production \
|
| 139 |
+
--cache-dir ./hf_cache
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
### Small Model (for constrained devices)
|
| 143 |
+
|
| 144 |
+
```bash
|
| 145 |
+
python train_with_hf_datasets.py \
|
| 146 |
+
--epochs 50 \
|
| 147 |
+
--lstm-units 64 \
|
| 148 |
+
--batch-size 8 \
|
| 149 |
+
--samples-per-epoch 500
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
### Large Model (maximum quality)
|
| 153 |
+
|
| 154 |
+
```bash
|
| 155 |
+
python train_with_hf_datasets.py \
|
| 156 |
+
--epochs 100 \
|
| 157 |
+
--lstm-units 256 \
|
| 158 |
+
--batch-size 32 \
|
| 159 |
+
--samples-per-epoch 10000
|
| 160 |
+
```
|
| 161 |
+
|
| 162 |
+
## Training Parameters
|
| 163 |
+
|
| 164 |
+
| Parameter | Default | Description |
|
| 165 |
+
|-----------|---------|-------------|
|
| 166 |
+
| `--clean-dataset` | `librispeech_asr` | HF dataset for clean speech |
|
| 167 |
+
| `--noise-dataset` | `dns-challenge/dns-challenge-4` | HF dataset for noise |
|
| 168 |
+
| `--clean-split` | `train.clean.100` | Dataset split for clean speech |
|
| 169 |
+
| `--noise-split` | `train` | Dataset split for noise |
|
| 170 |
+
| `--epochs` | 50 | Number of training epochs |
|
| 171 |
+
| `--batch-size` | 16 | Batch size (reduce if OOM) |
|
| 172 |
+
| `--samples-per-epoch` | 1000 | Samples per epoch |
|
| 173 |
+
| `--lstm-units` | 128 | LSTM units (64/128/256) |
|
| 174 |
+
| `--learning-rate` | 0.001 | Adam learning rate |
|
| 175 |
+
| `--no-qat` | False | Disable quantization-aware training |
|
| 176 |
+
| `--cache-dir` | None | Cache directory for datasets |
|
| 177 |
+
| `--output-dir` | `./models` | Output directory |
|
| 178 |
+
|
| 179 |
+
## Expected Results
|
| 180 |
+
|
| 181 |
+
### Training Progress
|
| 182 |
+
|
| 183 |
+
```
|
| 184 |
+
Epoch 1/50
|
| 185 |
+
63/63 [==============================] - 145s 2s/step - loss: 0.0234 - mae: 0.1023
|
| 186 |
+
Epoch 2/50
|
| 187 |
+
63/63 [==============================] - 142s 2s/step - loss: 0.0189 - mae: 0.0854
|
| 188 |
+
...
|
| 189 |
+
Epoch 50/50
|
| 190 |
+
63/63 [==============================] - 141s 2s/step - loss: 0.0042 - mae: 0.0312
|
| 191 |
+
```
|
| 192 |
+
|
| 193 |
+
### Model Performance
|
| 194 |
+
|
| 195 |
+
| Metric | Expected Value |
|
| 196 |
+
|--------|---------------|
|
| 197 |
+
| Final Loss | 0.003 - 0.006 |
|
| 198 |
+
| MAE | 0.02 - 0.04 |
|
| 199 |
+
| SNR Improvement | 12-15 dB |
|
| 200 |
+
| PESQ | 3.0 - 3.5 |
|
| 201 |
+
| STOI | 0.90 - 0.95 |
|
| 202 |
+
|
| 203 |
+
### Model Size
|
| 204 |
+
|
| 205 |
+
| Configuration | Parameters | FP32 Size | INT8 Size |
|
| 206 |
+
|--------------|------------|-----------|-----------|
|
| 207 |
+
| Small (64 units) | ~150K | ~600 KB | ~150 KB |
|
| 208 |
+
| Medium (128 units) | ~400K | ~1.6 MB | ~400 KB |
|
| 209 |
+
| Large (256 units) | ~1.3M | ~5.2 MB | ~1.3 MB |
|
| 210 |
+
|
| 211 |
+
## Using Trained Model
|
| 212 |
+
|
| 213 |
+
### Load and Test
|
| 214 |
+
|
| 215 |
+
```python
|
| 216 |
+
import tensorflow as tf
|
| 217 |
+
import numpy as np
|
| 218 |
+
import soundfile as sf
|
| 219 |
+
|
| 220 |
+
# Load model
|
| 221 |
+
model = tf.keras.models.load_model('./models/best_model.h5')
|
| 222 |
+
|
| 223 |
+
# Load noisy audio
|
| 224 |
+
noisy_audio, sr = sf.read('noisy_audio.wav')
|
| 225 |
+
|
| 226 |
+
# Ensure correct sample rate (16kHz)
|
| 227 |
+
if sr != 16000:
|
| 228 |
+
import librosa
|
| 229 |
+
noisy_audio = librosa.resample(noisy_audio, orig_sr=sr, target_sr=16000)
|
| 230 |
+
sr = 16000
|
| 231 |
+
|
| 232 |
+
# Denoise
|
| 233 |
+
enhanced_audio = model.predict(noisy_audio[np.newaxis, :])[0]
|
| 234 |
+
|
| 235 |
+
# Save result
|
| 236 |
+
sf.write('enhanced_audio.wav', enhanced_audio, sr)
|
| 237 |
+
```
|
| 238 |
+
|
| 239 |
+
### Convert to TFLite INT8
|
| 240 |
+
|
| 241 |
+
```bash
|
| 242 |
+
python convert_to_tflite.py \
|
| 243 |
+
--model ./models/best_model.h5 \
|
| 244 |
+
--output ./models/dtln_int8.tflite \
|
| 245 |
+
--calibration-dir ./calibration_data
|
| 246 |
+
```
|
| 247 |
+
|
| 248 |
+
### Optimize for Hardware Accelerator (Arm Ethos-U)
|
| 249 |
+
|
| 250 |
+
```bash
|
| 251 |
+
# Install Vela compiler
|
| 252 |
+
pip install ethos-u-vela
|
| 253 |
+
|
| 254 |
+
# Optimize for Ethos-U55
|
| 255 |
+
vela \
|
| 256 |
+
--accelerator-config ethos-u55-256 \
|
| 257 |
+
--system-config Ethos_U55_High_End_Embedded \
|
| 258 |
+
--memory-mode Shared_Sram \
|
| 259 |
+
./models/dtln_int8.tflite
|
| 260 |
+
```
|
| 261 |
+
|
| 262 |
+
## Troubleshooting
|
| 263 |
+
|
| 264 |
+
### Out of Memory (OOM)
|
| 265 |
+
|
| 266 |
+
**Problem**: Training crashes with OOM error
|
| 267 |
+
|
| 268 |
+
**Solutions**:
|
| 269 |
+
```bash
|
| 270 |
+
# Reduce batch size
|
| 271 |
+
--batch-size 8
|
| 272 |
+
|
| 273 |
+
# Reduce samples per epoch
|
| 274 |
+
--samples-per-epoch 500
|
| 275 |
+
|
| 276 |
+
# Reduce LSTM units
|
| 277 |
+
--lstm-units 64
|
| 278 |
+
```
|
| 279 |
+
|
| 280 |
+
### Dataset Download Fails
|
| 281 |
+
|
| 282 |
+
**Problem**: Cannot download dataset from Hugging Face
|
| 283 |
+
|
| 284 |
+
**Solutions**:
|
| 285 |
+
1. Check internet connection
|
| 286 |
+
2. Login to Hugging Face: `huggingface-cli login`
|
| 287 |
+
3. Try a different dataset
|
| 288 |
+
4. Use local files with original `train_dtln.py`
|
| 289 |
+
|
| 290 |
+
### Slow Training
|
| 291 |
+
|
| 292 |
+
**Problem**: Training is very slow
|
| 293 |
+
|
| 294 |
+
**Solutions**:
|
| 295 |
+
```bash
|
| 296 |
+
# Use streaming datasets (already default)
|
| 297 |
+
# Reduce samples per epoch
|
| 298 |
+
--samples-per-epoch 500
|
| 299 |
+
|
| 300 |
+
# Use GPU (automatically detected)
|
| 301 |
+
# Check: python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
|
| 302 |
+
```
|
| 303 |
+
|
| 304 |
+
### Poor Model Quality
|
| 305 |
+
|
| 306 |
+
**Problem**: Model doesn't denoise well
|
| 307 |
+
|
| 308 |
+
**Solutions**:
|
| 309 |
+
1. Train longer: `--epochs 100`
|
| 310 |
+
2. Use more samples: `--samples-per-epoch 5000`
|
| 311 |
+
3. Use larger model: `--lstm-units 256`
|
| 312 |
+
4. Use better datasets (LibriSpeech 360h instead of 100h)
|
| 313 |
+
5. Check training loss - should be < 0.01
|
| 314 |
+
|
| 315 |
+
## Advanced Topics
|
| 316 |
+
|
| 317 |
+
### Custom Dataset
|
| 318 |
+
|
| 319 |
+
To use your own dataset, it must be on Hugging Face Hub with an `audio` column:
|
| 320 |
+
|
| 321 |
+
```bash
|
| 322 |
+
python train_with_hf_datasets.py \
|
| 323 |
+
--clean-dataset "your-username/your-speech-dataset" \
|
| 324 |
+
--noise-dataset "your-username/your-noise-dataset"
|
| 325 |
+
```
|
| 326 |
+
|
| 327 |
+
### Multi-GPU Training
|
| 328 |
+
|
| 329 |
+
TensorFlow automatically uses multiple GPUs if available. To control:
|
| 330 |
+
|
| 331 |
+
```python
|
| 332 |
+
# In train_with_hf_datasets.py, add:
|
| 333 |
+
strategy = tf.distribute.MirroredStrategy()
|
| 334 |
+
with strategy.scope():
|
| 335 |
+
model = dtln.build_model()
|
| 336 |
+
# ... rest of training code
|
| 337 |
+
```
|
| 338 |
+
|
| 339 |
+
### Transfer Learning
|
| 340 |
+
|
| 341 |
+
Start from a pre-trained checkpoint:
|
| 342 |
+
|
| 343 |
+
```python
|
| 344 |
+
# Load pre-trained weights
|
| 345 |
+
model = tf.keras.models.load_model('pretrained_model.h5')
|
| 346 |
+
|
| 347 |
+
# Continue training
|
| 348 |
+
history = model.fit(train_generator, epochs=20)
|
| 349 |
+
```
|
| 350 |
+
|
| 351 |
+
### Monitoring with TensorBoard
|
| 352 |
+
|
| 353 |
+
```bash
|
| 354 |
+
# During training, logs are saved to ./models/logs/
|
| 355 |
+
# View with:
|
| 356 |
+
tensorboard --logdir ./models/logs
|
| 357 |
+
|
| 358 |
+
# Open browser to: http://localhost:6006
|
| 359 |
+
```
|
| 360 |
+
|
| 361 |
+
## Production Deployment
|
| 362 |
+
|
| 363 |
+
### 1. Train Production Model
|
| 364 |
+
|
| 365 |
+
```bash
|
| 366 |
+
python train_with_hf_datasets.py \
|
| 367 |
+
--clean-dataset librispeech_asr \
|
| 368 |
+
--clean-split train.clean.360 \
|
| 369 |
+
--epochs 100 \
|
| 370 |
+
--batch-size 32 \
|
| 371 |
+
--samples-per-epoch 10000 \
|
| 372 |
+
--lstm-units 128 \
|
| 373 |
+
--output-dir ./models/production
|
| 374 |
+
```
|
| 375 |
+
|
| 376 |
+
### 2. Evaluate on Test Set
|
| 377 |
+
|
| 378 |
+
```bash
|
| 379 |
+
# Create test script to measure PESQ, STOI, SNR
|
| 380 |
+
python evaluate_model.py \
|
| 381 |
+
--model ./models/production/best_model.h5 \
|
| 382 |
+
--test-dir ./test_data
|
| 383 |
+
```
|
| 384 |
+
|
| 385 |
+
### 3. Convert to TFLite INT8
|
| 386 |
+
|
| 387 |
+
```bash
|
| 388 |
+
python convert_to_tflite.py \
|
| 389 |
+
--model ./models/production/best_model.h5 \
|
| 390 |
+
--output ./models/dtln_production_int8.tflite
|
| 391 |
+
```
|
| 392 |
+
|
| 393 |
+
### 4. Deploy to Edge Device
|
| 394 |
+
|
| 395 |
+
See `alif_e7_voice_denoising_guide.md` for hardware deployment details.
|
| 396 |
+
|
| 397 |
+
## Resources
|
| 398 |
+
|
| 399 |
+
- **HF Datasets**: https://huggingface.co/datasets
|
| 400 |
+
- **Audio Datasets**: https://huggingface.co/datasets?task_categories=audio
|
| 401 |
+
- **DTLN Paper**: https://arxiv.org/abs/2005.07551
|
| 402 |
+
- **TFLite Guide**: https://www.tensorflow.org/lite
|
| 403 |
+
|
| 404 |
+
## Citation
|
| 405 |
+
|
| 406 |
+
```bibtex
|
| 407 |
+
@inproceedings{westhausen2020dtln,
|
| 408 |
+
title={Dual-signal transformation LSTM network for real-time noise suppression},
|
| 409 |
+
author={Westhausen, Nils L and Meyer, Bernd T},
|
| 410 |
+
booktitle={Interspeech},
|
| 411 |
+
year={2020}
|
| 412 |
+
}
|
| 413 |
+
```
|