Spaces:
Sleeping
Sleeping
Upload example_usage.py with huggingface_hub
Browse files- example_usage.py +207 -0
example_usage.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Example: Quick test of DTLN model
|
| 3 |
+
This script demonstrates how to:
|
| 4 |
+
1. Create a model
|
| 5 |
+
2. Generate synthetic noisy audio
|
| 6 |
+
3. Process it through the model
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import soundfile as sf
|
| 11 |
+
from dtln_ethos_u55 import DTLN_Ethos_U55, create_lightweight_model
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def generate_test_audio(duration=2.0, sample_rate=16000):
|
| 16 |
+
"""
|
| 17 |
+
Generate synthetic test audio (speech + noise)
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
duration: Audio duration in seconds
|
| 21 |
+
sample_rate: Sampling rate
|
| 22 |
+
|
| 23 |
+
Returns:
|
| 24 |
+
Tuple of (clean, noisy) audio
|
| 25 |
+
"""
|
| 26 |
+
t = np.linspace(0, duration, int(duration * sample_rate))
|
| 27 |
+
|
| 28 |
+
# Generate synthetic "speech" (mixture of frequencies)
|
| 29 |
+
speech = (
|
| 30 |
+
0.3 * np.sin(2 * np.pi * 200 * t) +
|
| 31 |
+
0.2 * np.sin(2 * np.pi * 400 * t) +
|
| 32 |
+
0.15 * np.sin(2 * np.pi * 600 * t)
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Add envelope to simulate speech patterns
|
| 36 |
+
envelope = 0.5 + 0.5 * np.sin(2 * np.pi * 3 * t)
|
| 37 |
+
speech = speech * envelope
|
| 38 |
+
|
| 39 |
+
# Generate noise
|
| 40 |
+
noise = np.random.randn(len(t)) * 0.15
|
| 41 |
+
|
| 42 |
+
# Mix speech and noise (SNR ~10dB)
|
| 43 |
+
noisy = speech + noise
|
| 44 |
+
|
| 45 |
+
# Normalize
|
| 46 |
+
speech = speech / (np.max(np.abs(speech)) + 1e-8) * 0.9
|
| 47 |
+
noisy = noisy / (np.max(np.abs(noisy)) + 1e-8) * 0.9
|
| 48 |
+
|
| 49 |
+
return speech.astype(np.float32), noisy.astype(np.float32)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def plot_comparison(clean, noisy, enhanced, sample_rate=16000):
|
| 53 |
+
"""Plot waveforms and spectrograms for comparison"""
|
| 54 |
+
|
| 55 |
+
fig, axes = plt.subplots(3, 2, figsize=(12, 10))
|
| 56 |
+
|
| 57 |
+
# Time domain plots
|
| 58 |
+
t = np.arange(len(clean)) / sample_rate
|
| 59 |
+
|
| 60 |
+
axes[0, 0].plot(t, clean)
|
| 61 |
+
axes[0, 0].set_title('Clean Speech (Waveform)')
|
| 62 |
+
axes[0, 0].set_ylabel('Amplitude')
|
| 63 |
+
axes[0, 0].grid(True)
|
| 64 |
+
|
| 65 |
+
axes[1, 0].plot(t, noisy)
|
| 66 |
+
axes[1, 0].set_title('Noisy Speech (Waveform)')
|
| 67 |
+
axes[1, 0].set_ylabel('Amplitude')
|
| 68 |
+
axes[1, 0].grid(True)
|
| 69 |
+
|
| 70 |
+
axes[2, 0].plot(t, enhanced)
|
| 71 |
+
axes[2, 0].set_title('Enhanced Speech (Waveform)')
|
| 72 |
+
axes[2, 0].set_xlabel('Time (s)')
|
| 73 |
+
axes[2, 0].set_ylabel('Amplitude')
|
| 74 |
+
axes[2, 0].grid(True)
|
| 75 |
+
|
| 76 |
+
# Frequency domain plots (spectrograms)
|
| 77 |
+
from scipy import signal
|
| 78 |
+
|
| 79 |
+
for idx, (audio, title) in enumerate([
|
| 80 |
+
(clean, 'Clean Speech (Spectrogram)'),
|
| 81 |
+
(noisy, 'Noisy Speech (Spectrogram)'),
|
| 82 |
+
(enhanced, 'Enhanced Speech (Spectrogram)')
|
| 83 |
+
]):
|
| 84 |
+
f, t_spec, Sxx = signal.spectrogram(audio, sample_rate, nperseg=512)
|
| 85 |
+
axes[idx, 1].pcolormesh(
|
| 86 |
+
t_spec, f, 10 * np.log10(Sxx + 1e-10),
|
| 87 |
+
shading='gouraud',
|
| 88 |
+
cmap='viridis'
|
| 89 |
+
)
|
| 90 |
+
axes[idx, 1].set_ylabel('Frequency (Hz)')
|
| 91 |
+
axes[idx, 1].set_title(title)
|
| 92 |
+
if idx == 2:
|
| 93 |
+
axes[idx, 1].set_xlabel('Time (s)')
|
| 94 |
+
|
| 95 |
+
plt.tight_layout()
|
| 96 |
+
plt.savefig('/mnt/user-data/outputs/denoising_comparison.png', dpi=150)
|
| 97 |
+
print("\nβ Comparison plot saved to: denoising_comparison.png")
|
| 98 |
+
plt.close()
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def calculate_metrics(clean, enhanced):
|
| 102 |
+
"""Calculate quality metrics"""
|
| 103 |
+
|
| 104 |
+
# Signal-to-Noise Ratio (SNR)
|
| 105 |
+
noise = clean - enhanced
|
| 106 |
+
signal_power = np.mean(clean ** 2)
|
| 107 |
+
noise_power = np.mean(noise ** 2)
|
| 108 |
+
snr = 10 * np.log10(signal_power / (noise_power + 1e-10))
|
| 109 |
+
|
| 110 |
+
# Mean Squared Error
|
| 111 |
+
mse = np.mean((clean - enhanced) ** 2)
|
| 112 |
+
|
| 113 |
+
# Root Mean Squared Error
|
| 114 |
+
rmse = np.sqrt(mse)
|
| 115 |
+
|
| 116 |
+
return {
|
| 117 |
+
'SNR (dB)': snr,
|
| 118 |
+
'MSE': mse,
|
| 119 |
+
'RMSE': rmse
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def main():
|
| 124 |
+
"""Main example function"""
|
| 125 |
+
|
| 126 |
+
print("="*60)
|
| 127 |
+
print("DTLN Model Example for Alif E7 Ethos-U55")
|
| 128 |
+
print("="*60)
|
| 129 |
+
|
| 130 |
+
# 1. Create model
|
| 131 |
+
print("\n1. Creating DTLN model...")
|
| 132 |
+
dtln = create_lightweight_model(target_size_kb=100)
|
| 133 |
+
model = dtln.build_model()
|
| 134 |
+
print(" β Model created")
|
| 135 |
+
|
| 136 |
+
# 2. Generate test audio
|
| 137 |
+
print("\n2. Generating test audio...")
|
| 138 |
+
clean, noisy = generate_test_audio(duration=2.0)
|
| 139 |
+
print(f" β Generated {len(clean)/16000:.1f}s of audio")
|
| 140 |
+
print(f" β Clean audio range: [{np.min(clean):.3f}, {np.max(clean):.3f}]")
|
| 141 |
+
print(f" β Noisy audio range: [{np.min(noisy):.3f}, {np.max(noisy):.3f}]")
|
| 142 |
+
|
| 143 |
+
# Save test audio
|
| 144 |
+
sf.write('/mnt/user-data/outputs/test_clean.wav', clean, 16000)
|
| 145 |
+
sf.write('/mnt/user-data/outputs/test_noisy.wav', noisy, 16000)
|
| 146 |
+
print(" β Saved: test_clean.wav, test_noisy.wav")
|
| 147 |
+
|
| 148 |
+
# 3. Process through model (random weights, not trained yet)
|
| 149 |
+
print("\n3. Processing through model...")
|
| 150 |
+
print(" β Note: Model has random weights (not trained)")
|
| 151 |
+
|
| 152 |
+
# Expand dims for batch
|
| 153 |
+
noisy_batch = np.expand_dims(noisy, 0)
|
| 154 |
+
|
| 155 |
+
# Forward pass
|
| 156 |
+
enhanced = model.predict(noisy_batch, verbose=0)
|
| 157 |
+
enhanced = enhanced[0] # Remove batch dimension
|
| 158 |
+
|
| 159 |
+
print(" β Processing complete")
|
| 160 |
+
print(f" β Enhanced audio range: [{np.min(enhanced):.3f}, {np.max(enhanced):.3f}]")
|
| 161 |
+
|
| 162 |
+
# Save enhanced audio
|
| 163 |
+
sf.write('/mnt/user-data/outputs/test_enhanced.wav', enhanced, 16000)
|
| 164 |
+
print(" β Saved: test_enhanced.wav")
|
| 165 |
+
|
| 166 |
+
# 4. Calculate metrics
|
| 167 |
+
print("\n4. Quality Metrics:")
|
| 168 |
+
metrics = calculate_metrics(clean, enhanced)
|
| 169 |
+
for metric_name, value in metrics.items():
|
| 170 |
+
print(f" {metric_name}: {value:.4f}")
|
| 171 |
+
|
| 172 |
+
print("\n β Note: These metrics are poor because model is untrained")
|
| 173 |
+
print(" After training, expect SNR improvement of 10-15 dB")
|
| 174 |
+
|
| 175 |
+
# 5. Plot comparison
|
| 176 |
+
print("\n5. Creating visualization...")
|
| 177 |
+
plot_comparison(clean, noisy, enhanced)
|
| 178 |
+
|
| 179 |
+
# 6. Show model info
|
| 180 |
+
print("\n6. Model Information:")
|
| 181 |
+
print(f" Parameters: {model.count_params():,}")
|
| 182 |
+
print(f" Layers: {len(model.layers)}")
|
| 183 |
+
print(f" Input shape: {model.input_shape}")
|
| 184 |
+
print(f" Output shape: {model.output_shape}")
|
| 185 |
+
|
| 186 |
+
# 7. Build stateful models
|
| 187 |
+
print("\n7. Building stateful models for real-time inference...")
|
| 188 |
+
stage1, stage2 = dtln.build_stateful_model()
|
| 189 |
+
print(f" β Stage 1 parameters: {stage1.count_params():,}")
|
| 190 |
+
print(f" β Stage 2 parameters: {stage2.count_params():,}")
|
| 191 |
+
|
| 192 |
+
print("\n" + "="*60)
|
| 193 |
+
print("β Example complete!")
|
| 194 |
+
print("\nGenerated files:")
|
| 195 |
+
print(" - test_clean.wav")
|
| 196 |
+
print(" - test_noisy.wav")
|
| 197 |
+
print(" - test_enhanced.wav")
|
| 198 |
+
print(" - denoising_comparison.png")
|
| 199 |
+
print("\nNext steps:")
|
| 200 |
+
print(" 1. Train the model: python train_dtln.py --help")
|
| 201 |
+
print(" 2. Convert to TFLite: python convert_to_tflite.py --help")
|
| 202 |
+
print(" 3. Deploy to Alif E7")
|
| 203 |
+
print("="*60)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
if __name__ == "__main__":
|
| 207 |
+
main()
|