Spaces:
Sleeping
Sleeping
File size: 12,463 Bytes
a02fb02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
"""
Convert trained DTLN model to TensorFlow Lite INT8 format
Optimized for Alif E7 Ethos-U55 NPU deployment
"""
import tensorflow as tf
import numpy as np
import soundfile as sf
import librosa
from pathlib import Path
import argparse
import os
def load_representative_dataset(
audio_dir,
num_samples=100,
frame_len=512,
sampling_rate=16000
):
"""
Load representative audio dataset for calibration
Args:
audio_dir: Directory containing audio files
num_samples: Number of samples for calibration
frame_len: Frame length
sampling_rate: Audio sampling rate
Returns:
Generator yielding audio samples
"""
audio_files = list(Path(audio_dir).glob('**/*.wav'))
if len(audio_files) < num_samples:
print(f"Warning: Only {len(audio_files)} files found, using all")
num_samples = len(audio_files)
selected_files = np.random.choice(audio_files, num_samples, replace=False)
def representative_dataset_gen():
for file_path in selected_files:
# Load audio
audio, sr = sf.read(file_path)
# Resample if needed
if sr != sampling_rate:
audio = librosa.resample(
audio,
orig_sr=sr,
target_sr=sampling_rate
)
# Convert to mono
if len(audio.shape) > 1:
audio = np.mean(audio, axis=1)
# Take 1 second segment
segment_len = sampling_rate
if len(audio) > segment_len:
start = np.random.randint(0, len(audio) - segment_len)
audio = audio[start:start + segment_len]
else:
audio = np.pad(audio, (0, segment_len - len(audio)))
# Normalize
audio = audio / (np.max(np.abs(audio)) + 1e-8)
# Yield as float32 numpy array
yield [audio.astype(np.float32)[np.newaxis, :]]
return representative_dataset_gen
def convert_to_tflite_int8(
model_path,
output_path,
representative_data_dir,
num_calibration_samples=100
):
"""
Convert Keras model to TFLite with full INT8 quantization
Args:
model_path: Path to trained Keras model (.h5)
output_path: Output path for TFLite model (.tflite)
representative_data_dir: Directory with audio for calibration
num_calibration_samples: Number of samples for calibration
Returns:
TFLite model as bytes
"""
print("="*60)
print("Converting to TensorFlow Lite INT8")
print("="*60)
# Load model
print("\n1. Loading model...")
try:
model = tf.keras.models.load_model(
model_path,
compile=False
)
print(f" β Model loaded from {model_path}")
except Exception as e:
print(f" β Error loading model: {e}")
return None
model.summary()
# Create converter
print("\n2. Creating TFLite converter...")
converter = tf.lite.TFLiteConverter.from_keras_model(model)
# Enable optimizations
converter.optimizations = [tf.lite.Optimize.DEFAULT]
# Set up representative dataset for calibration
print("\n3. Setting up representative dataset...")
representative_dataset = load_representative_dataset(
audio_dir=representative_data_dir,
num_samples=num_calibration_samples
)
converter.representative_dataset = representative_dataset
print(f" β Using {num_calibration_samples} samples for calibration")
# Force full integer quantization
print("\n4. Configuring INT8 quantization...")
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS_INT8
]
# Set input/output to INT8
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8
# Additional optimizations for Ethos-U55
converter.experimental_new_converter = True
converter.experimental_new_quantizer = True
print(" β Quantization configured:")
print(" - Optimization: DEFAULT")
print(" - Ops: TFLITE_BUILTINS_INT8")
print(" - Input type: INT8")
print(" - Output type: INT8")
# Convert
print("\n5. Converting model (this may take a few minutes)...")
try:
tflite_model = converter.convert()
print(" β Conversion successful!")
except Exception as e:
print(f" β Conversion failed: {e}")
return None
# Save
print(f"\n6. Saving TFLite model to {output_path}...")
with open(output_path, 'wb') as f:
f.write(tflite_model)
# Print statistics
model_size_kb = len(tflite_model) / 1024
print(f" β Model saved")
print(f" β Model size: {model_size_kb:.2f} KB")
if model_size_kb > 1024:
print(f" β Warning: Model size ({model_size_kb:.2f} KB) exceeds 1MB")
print(" Consider reducing LSTM units or other optimizations")
return tflite_model
def convert_to_tflite_dynamic_range(
model_path,
output_path
):
"""
Convert with dynamic range quantization (weights only)
Lighter quantization, good for testing
Args:
model_path: Path to trained Keras model
output_path: Output path for TFLite model
Returns:
TFLite model as bytes
"""
print("Converting with dynamic range quantization...")
model = tf.keras.models.load_model(model_path, compile=False)
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()
with open(output_path, 'wb') as f:
f.write(tflite_model)
print(f"β Model saved to {output_path}")
print(f"β Size: {len(tflite_model) / 1024:.2f} KB")
return tflite_model
def analyze_tflite_model(tflite_path):
"""
Analyze converted TFLite model
Args:
tflite_path: Path to TFLite model
"""
print("\n" + "="*60)
print("Model Analysis")
print("="*60)
# Load interpreter
interpreter = tf.lite.Interpreter(model_path=tflite_path)
interpreter.allocate_tensors()
# Get input details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print("\nπ₯ Input Tensor Details:")
for i, detail in enumerate(input_details):
print(f"\n Input {i}:")
print(f" Name: {detail['name']}")
print(f" Shape: {detail['shape']}")
print(f" Type: {detail['dtype']}")
quant = detail['quantization']
if quant[0] or quant[1]:
print(f" Scale: {quant[0]}")
print(f" Zero point: {quant[1]}")
print("\nπ€ Output Tensor Details:")
for i, detail in enumerate(output_details):
print(f"\n Output {i}:")
print(f" Name: {detail['name']}")
print(f" Shape: {detail['shape']}")
print(f" Type: {detail['dtype']}")
quant = detail['quantization']
if quant[0] or quant[1]:
print(f" Scale: {quant[0]}")
print(f" Zero point: {quant[1]}")
# Get tensor details
tensor_details = interpreter.get_tensor_details()
print(f"\nπ Total Tensors: {len(tensor_details)}")
# Count operations
print("\nπ§ Model Operations:")
ops = {}
for tensor in tensor_details:
if 'name' in tensor and tensor['name']:
# Extract op type from name
parts = tensor['name'].split('/')
if len(parts) > 1:
op_type = parts[0]
ops[op_type] = ops.get(op_type, 0) + 1
for op_type, count in sorted(ops.items()):
print(f" {op_type}: {count}")
def test_inference(tflite_path, test_audio_path):
"""
Test inference with TFLite model
Args:
tflite_path: Path to TFLite model
test_audio_path: Path to test audio file
"""
print("\n" + "="*60)
print("Testing Inference")
print("="*60)
# Load model
interpreter = tf.lite.Interpreter(model_path=tflite_path)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Load test audio
print(f"\nLoading test audio: {test_audio_path}")
audio, sr = sf.read(test_audio_path)
if sr != 16000:
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
if len(audio.shape) > 1:
audio = np.mean(audio, axis=1)
# Take 1 second
audio = audio[:16000]
if len(audio) < 16000:
audio = np.pad(audio, (0, 16000 - len(audio)))
# Normalize
audio = audio / (np.max(np.abs(audio)) + 1e-8)
# Prepare input
input_data = audio.astype(np.float32)[np.newaxis, :]
# Quantize input if needed
input_dtype = input_details[0]['dtype']
if input_dtype == np.int8:
input_scale = input_details[0]['quantization'][0]
input_zero_point = input_details[0]['quantization'][1]
input_data = (input_data / input_scale + input_zero_point).astype(np.int8)
# Run inference
print("\nRunning inference...")
interpreter.set_tensor(input_details[0]['index'], input_data)
import time
start = time.time()
interpreter.invoke()
latency = (time.time() - start) * 1000
print(f"β Inference completed")
print(f"β Latency: {latency:.2f} ms")
# Get output
output_data = interpreter.get_tensor(output_details[0]['index'])
# Dequantize if needed
output_dtype = output_details[0]['dtype']
if output_dtype == np.int8:
output_scale = output_details[0]['quantization'][0]
output_zero_point = output_details[0]['quantization'][1]
output_data = (output_data.astype(np.float32) - output_zero_point) * output_scale
print(f"β Output shape: {output_data.shape}")
print(f"β Output range: [{np.min(output_data):.4f}, {np.max(output_data):.4f}]")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Convert DTLN model to TFLite INT8 for Ethos-U55'
)
parser.add_argument(
'--model',
type=str,
required=True,
help='Path to trained Keras model (.h5)'
)
parser.add_argument(
'--output',
type=str,
required=True,
help='Output path for TFLite model (.tflite)'
)
parser.add_argument(
'--calibration-dir',
type=str,
required=True,
help='Directory with audio for calibration'
)
parser.add_argument(
'--num-calibration-samples',
type=int,
default=100,
help='Number of samples for calibration'
)
parser.add_argument(
'--test-audio',
type=str,
default=None,
help='Path to test audio file'
)
parser.add_argument(
'--dynamic-range',
action='store_true',
help='Use dynamic range quantization instead of full INT8'
)
args = parser.parse_args()
# Convert model
if args.dynamic_range:
tflite_model = convert_to_tflite_dynamic_range(
args.model,
args.output
)
else:
tflite_model = convert_to_tflite_int8(
model_path=args.model,
output_path=args.output,
representative_data_dir=args.calibration_dir,
num_calibration_samples=args.num_calibration_samples
)
if tflite_model is None:
print("\nβ Conversion failed!")
exit(1)
# Analyze model
analyze_tflite_model(args.output)
# Test inference if test audio provided
if args.test_audio and os.path.exists(args.test_audio):
test_inference(args.output, args.test_audio)
print("\n" + "="*60)
print("β All done!")
print(f"β TFLite model saved to: {args.output}")
print("\nNext steps:")
print("1. Use Vela compiler to optimize for Ethos-U55:")
print(f" vela --accelerator-config ethos-u55-256 {args.output}")
print("2. Integrate into Alif E7 application")
print("3. Profile on actual hardware")
print("="*60)
|