gaparmar commited on
Commit
1f71119
·
1 Parent(s): 33e625e

Adding app.py

Browse files
Files changed (1) hide show
  1. app.py +298 -0
app.py ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import spaces
3
+ import time
4
+ import gradio as gr
5
+ import torch
6
+ import functools
7
+ import numpy as np
8
+ import torch.nn.functional as F
9
+ from diffusers import FluxPipeline, AutoencoderTiny, FluxKontextPipeline
10
+ from transformers import CLIPProcessor, CLIPModel, AutoModel
11
+ from transformers.models.clip.modeling_clip import _get_vector_norm
12
+ from nunchaku import NunchakuFluxTransformer2dModel
13
+ from nunchaku.utils import get_precision
14
+ from my_utils.group_inference import run_group_inference
15
+ from my_utils.default_values import apply_defaults
16
+ from diffusers.hooks import apply_group_offloading
17
+ from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, FluxTransformer2DModel, FluxPipeline
18
+ from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
19
+
20
+ import argparse
21
+
22
+ pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
23
+ pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
24
+ pipe.enable_model_cpu_offload()
25
+
26
+
27
+ # pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
28
+
29
+ m_clip = CLIPModel.from_pretrained("multimodalart/clip-vit-base-patch32").to("cuda")
30
+ prep_clip = CLIPProcessor.from_pretrained("multimodalart/clip-vit-base-patch32")
31
+ dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to("cuda")
32
+
33
+ # Get default args for flux-schnell
34
+ default_args = argparse.Namespace(
35
+ model_name="flux-kontext",
36
+ prompt=None,
37
+ starting_candidates=None,
38
+ output_group_size=None,
39
+ pruning_ratio=None,
40
+ lambda_score=None,
41
+ seed=None,
42
+ unary_term="clip_text_img",
43
+ binary_term="diversity_dino",
44
+ guidance_scale=None,
45
+ num_inference_steps=None,
46
+ height=512,
47
+ width=512,
48
+ )
49
+ default_args = apply_defaults(default_args)
50
+
51
+
52
+ # Scoring functions
53
+ @torch.no_grad()
54
+ def unary_clip_text_img_score(l_images, target_caption, device="cuda"):
55
+ """Compute CLIP text-image similarity scores."""
56
+ _img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
57
+ _img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
58
+
59
+ b_images = torch.cat(l_images, dim=0)
60
+ b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
61
+ b_images = b_images * 0.5 + 0.5
62
+ b_images = (b_images - _img_mean) / _img_std
63
+
64
+ text_encoding = prep_clip.tokenizer(target_caption, return_tensors="pt", padding=True).to(device)
65
+ output = m_clip(pixel_values=b_images, **text_encoding).logits_per_image / m_clip.logit_scale.exp()
66
+ return output.view(-1).cpu().numpy()
67
+
68
+
69
+ @torch.no_grad()
70
+ def binary_dino_diversity_score(l_images, device="cuda"):
71
+ """Compute pairwise diversity scores using DINO."""
72
+ b_images = torch.cat(l_images, dim=0)
73
+ _img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
74
+ _img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
75
+
76
+ b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
77
+ b_images = b_images * 0.5 + 0.5
78
+ b_images = (b_images - _img_mean) / _img_std
79
+ all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 1:, :].cpu()
80
+
81
+ N = len(l_images)
82
+ score_matrix = np.zeros((N, N))
83
+ for i in range(N):
84
+ f1 = all_features[i]
85
+ for j in range(i+1, N):
86
+ f2 = all_features[j]
87
+ cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
88
+ score_matrix[i, j] = cos_sim
89
+ return score_matrix
90
+
91
+
92
+ @torch.no_grad()
93
+ def binary_dino_cls_score(l_images, device="cuda"):
94
+ """Compute pairwise diversity scores using DINO CLS tokens."""
95
+ b_images = torch.cat(l_images, dim=0)
96
+ _img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
97
+ _img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
98
+
99
+ b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
100
+ b_images = b_images * 0.5 + 0.5
101
+ b_images = (b_images - _img_mean) / _img_std
102
+ all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 0:1, :].cpu()
103
+
104
+ N = len(l_images)
105
+ score_matrix = np.zeros((N, N))
106
+ for i in range(N):
107
+ f1 = all_features[i]
108
+ for j in range(i+1, N):
109
+ f2 = all_features[j]
110
+ cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
111
+ score_matrix[i, j] = cos_sim
112
+ return score_matrix
113
+
114
+
115
+ @torch.no_grad()
116
+ def binary_clip_diversity_score(l_images, device="cuda"):
117
+ """Compute pairwise diversity scores using CLIP."""
118
+ _img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
119
+ _img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
120
+
121
+ b_images = torch.cat(l_images, dim=0)
122
+ b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
123
+ b_images = b_images * 0.5 + 0.5
124
+ b_images = (b_images - _img_mean) / _img_std
125
+
126
+ vision_outputs = m_clip.vision_model(
127
+ pixel_values=b_images,
128
+ output_attentions=False,
129
+ output_hidden_states=False,
130
+ interpolate_pos_encoding=False,
131
+ return_dict=True
132
+ )
133
+ image_embeds = m_clip.visual_projection(vision_outputs[1])
134
+ image_embeds = image_embeds / _get_vector_norm(image_embeds)
135
+
136
+ N = len(l_images)
137
+ score_matrix = np.zeros((N, N))
138
+ for i in range(N):
139
+ f1 = image_embeds[i]
140
+ for j in range(i+1, N):
141
+ f2 = image_embeds[j]
142
+ cos_sim = (1 - torch.dot(f1, f2)).item()
143
+ score_matrix[i, j] = cos_sim
144
+ return score_matrix
145
+
146
+
147
+ def get_score_functions(unary_term, binary_term, prompt):
148
+ """Get the appropriate scoring functions based on selected terms."""
149
+ # Unary score function (always CLIP for flux-schnell) - bind the prompt
150
+ unary_score_fn = functools.partial(unary_clip_text_img_score, target_caption=prompt, device="cuda")
151
+ # Binary score function
152
+ if binary_term == "diversity_dino":
153
+ binary_score_fn = functools.partial(binary_dino_diversity_score, device="cuda")
154
+ elif binary_term == "dino_cls_pairwise":
155
+ binary_score_fn = functools.partial(binary_dino_cls_score, device="cuda")
156
+ elif binary_term == "diversity_clip":
157
+ binary_score_fn = functools.partial(binary_clip_diversity_score, device="cuda")
158
+ else:
159
+ raise ValueError(f"Invalid binary term: {binary_term}")
160
+
161
+ return unary_score_fn, binary_score_fn
162
+
163
+
164
+ @spaces.GPU(duration=200)
165
+ def generate_images(prompt, starting_candidates, output_group_size, pruning_ratio,
166
+ lambda_score, seed, unary_term, binary_term, input_image=None, progress=gr.Progress(track_tqdm=True)):
167
+ """Generate images using group inference with progressive pruning."""
168
+
169
+ # Get scoring functions with prompt bound to unary function
170
+ unary_score_fn, binary_score_fn = get_score_functions(unary_term, binary_term, prompt)
171
+
172
+ # Create inference args
173
+ inference_args = {
174
+ "model_name": "flux-kontext",
175
+ "prompt": prompt,
176
+ "guidance_scale": default_args.guidance_scale,
177
+ "num_inference_steps": default_args.num_inference_steps,
178
+ "max_sequence_length": 256,
179
+ "height": default_args.height,
180
+ "width": default_args.width,
181
+ "unary_score_fn": unary_score_fn,
182
+ "binary_score_fn": binary_score_fn,
183
+ "output_group_size": output_group_size,
184
+ "pruning_ratio": pruning_ratio,
185
+ "lambda_score": lambda_score,
186
+ "l_generator": [torch.Generator("cpu").manual_seed(seed + i) for i in range(starting_candidates)],
187
+ "starting_candidates": starting_candidates,
188
+ "skip_first_cfg": True,
189
+ }
190
+ inference_args["input_image"] = input_image
191
+ print(f"pruning ratio is: {pruning_ratio}")
192
+ # Run group inference
193
+ t_start = time.time()
194
+ output_group = run_group_inference(pipe, **inference_args)
195
+ t_end = time.time()
196
+ print(f"Time taken for group inference: {t_end - t_start} seconds")
197
+ return output_group
198
+
199
+
200
+ # Load custom CSS
201
+ css_path = os.path.join(os.path.dirname(__file__), "styles.css")
202
+ with open(css_path, "r") as f:
203
+ custom_css = f.read()
204
+
205
+ # JavaScript to force light mode
206
+ js_func = """
207
+ function refresh() {
208
+ const url = new URL(window.location);
209
+ if (url.searchParams.get('__theme') !== 'light') {
210
+ url.searchParams.set('__theme', 'light');
211
+ window.location.href = url.href;
212
+ }
213
+ }
214
+ """
215
+
216
+ # Create Gradio interface
217
+ with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Soft(), elem_id="main-container") as demo:
218
+
219
+ # Title and header
220
+ gr.HTML(
221
+ """
222
+ <div class="title_left">
223
+ <h1>Scaling Group Inference for Diverse and High-Quality Generation</h1>
224
+ <div class="author-container">
225
+ <div class="grid-item cmu"><a href="https://gauravparmar.com/">Gaurav Parmar</a></div>
226
+ <div class="grid-item snap"><a href="https://orpatashnik.github.io/">Or Patashnik</a></div>
227
+ <div class="grid-item snap"><a href="https://scholar.google.com/citations?user=uD79u6oAAAAJ&hl=en">Daniil Ostashev</a></div>
228
+ <div class="grid-item snap"><a href="https://wangkua1.github.io/">Kuan-Chieh (Jackson) Wang</a></div>
229
+ <div class="grid-item snap"><a href="https://kfiraberman.github.io/">Kfir Aberman</a></div>
230
+ </div>
231
+ <div class="author-container">
232
+ <div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~srinivas/">Srinivasa Narasimhan</a></div>
233
+ <div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~junyanz/">Jun-Yan Zhu</a></div>
234
+ </div>
235
+ <br>
236
+ <div class="affiliation-container">
237
+ <div class="grid-item cmu"> <p>Carnegie Mellon University</p></div>
238
+ <div class="grid-item snap"> <p>Snap Research</p></div>
239
+ </div>
240
+
241
+ <br>
242
+ <h2>DEMO: Text-to-Image Group Inference with FLUX.1-Schnell</h2>
243
+ </div>
244
+ """
245
+ )
246
+
247
+ with gr.Row(scale=1):
248
+ with gr.Column(scale=1.0):
249
+ prompt_placeholder = "Cat is playing outside in nature."
250
+ prompt_default = "Cat is playing outside in nature."
251
+ prompt = gr.Textbox(label="Prompt", placeholder=prompt_placeholder, lines=4, value=prompt_default)
252
+ input_image = gr.Image(label="Input Image", type="pil", sources=["upload"])
253
+
254
+ with gr.Column(scale=1.0):
255
+ with gr.Row(elem_id="starting-candidates-row"):
256
+ gr.Text("Starting Candidates:", container=False, interactive=False, scale=5)
257
+ starting_candidates = gr.Number(value=default_args.starting_candidates, precision=0, container=False, show_label=False, scale=1)
258
+
259
+ with gr.Row(elem_id="output-group-size-row"):
260
+ gr.Text("Output Group Size:", container=False, interactive=False, scale=5)
261
+ output_group_size = gr.Number(value=default_args.output_group_size, precision=0, container=False, show_label=False, scale=1)
262
+
263
+ with gr.Column(scale=1.0):
264
+ with gr.Accordion("Advanced Options", open=False, elem_id="advanced-options-accordion"):
265
+ with gr.Row():
266
+ gr.Text("Pruning Ratio:", container=False, interactive=False, elem_id="pruning-ratio-label", scale=3)
267
+ pruning_ratio = gr.Number(value=default_args.pruning_ratio, precision=2, container=False, show_label=False, scale=1)
268
+
269
+ with gr.Row():
270
+ gr.Text("Lambda:", container=False, interactive=False, elem_id="lambda-label", scale=5)
271
+ lambda_score = gr.Number(value=default_args.lambda_score, precision=1, container=False, show_label=False, scale=1)
272
+
273
+ with gr.Row():
274
+ gr.Text("Seed:", container=False, interactive=False, elem_id="seed-label", scale=5)
275
+ seed = gr.Number(value=42, precision=0, container=False, show_label=False, scale=1)
276
+
277
+ with gr.Row():
278
+ gr.Text("Unary:", container=False, interactive=False, elem_id="unary-term-label", scale=2)
279
+ unary_term = gr.Dropdown(choices=["clip_text_img"], value=default_args.unary_term, container=False, show_label=False, scale=3)
280
+
281
+ with gr.Row():
282
+ gr.Text("Binary:", container=False, interactive=False, elem_id="binary-term-label", scale=2)
283
+ binary_term = gr.Dropdown(choices=["diversity_dino", "diversity_clip", "dino_cls_pairwise"], value=default_args.binary_term,
284
+ container=False, show_label=False, scale=3)
285
+
286
+ with gr.Row(scale=1):
287
+ generate_btn = gr.Button("Generate", variant="primary")
288
+
289
+ with gr.Row(scale=1):
290
+ output_gallery_group = gr.Gallery(label="Group Inference", show_label=True,elem_id="gallery", columns=4, height="auto")
291
+
292
+ generate_btn.click(
293
+ fn=generate_images,
294
+ inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term, input_image],
295
+ outputs=[output_gallery_group]
296
+ )
297
+
298
+ demo.launch()