Spaces:
Running
Running
Shing Yee
commited on
Add application
Browse files- .gitattributes +1 -0
- .gitignore +160 -0
- app.py +55 -0
- models/cross-encoder-ms-marco-MiniLM-L-6-v2-CrossEncoder-OffTopic-Classifier-20240918-090615.safetensors +3 -0
- models/cross-encoder-stsb-roberta-base-CrossEncoder-OffTopic-Classifier-20240920-174009.safetensors +3 -0
- models/jinaai-jina-embeddings-v2-small-en-TwinEncoder-OffTopic-Classifier-20240915-151858.safetensors +3 -0
- requirements.txt +66 -0
- utils.py +202 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
models/*.safetensors filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# poetry
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 102 |
+
#poetry.lock
|
| 103 |
+
|
| 104 |
+
# pdm
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 106 |
+
#pdm.lock
|
| 107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 108 |
+
# in version control.
|
| 109 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 110 |
+
.pdm.toml
|
| 111 |
+
|
| 112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 113 |
+
__pypackages__/
|
| 114 |
+
|
| 115 |
+
# Celery stuff
|
| 116 |
+
celerybeat-schedule
|
| 117 |
+
celerybeat.pid
|
| 118 |
+
|
| 119 |
+
# SageMath parsed files
|
| 120 |
+
*.sage.py
|
| 121 |
+
|
| 122 |
+
# Environments
|
| 123 |
+
.env
|
| 124 |
+
.venv
|
| 125 |
+
env/
|
| 126 |
+
venv/
|
| 127 |
+
ENV/
|
| 128 |
+
env.bak/
|
| 129 |
+
venv.bak/
|
| 130 |
+
|
| 131 |
+
# Spyder project settings
|
| 132 |
+
.spyderproject
|
| 133 |
+
.spyproject
|
| 134 |
+
|
| 135 |
+
# Rope project settings
|
| 136 |
+
.ropeproject
|
| 137 |
+
|
| 138 |
+
# mkdocs documentation
|
| 139 |
+
/site
|
| 140 |
+
|
| 141 |
+
# mypy
|
| 142 |
+
.mypy_cache/
|
| 143 |
+
.dmypy.json
|
| 144 |
+
dmypy.json
|
| 145 |
+
|
| 146 |
+
# Pyre type checker
|
| 147 |
+
.pyre/
|
| 148 |
+
|
| 149 |
+
# pytype static type analyzer
|
| 150 |
+
.pytype/
|
| 151 |
+
|
| 152 |
+
# Cython debug symbols
|
| 153 |
+
cython_debug/
|
| 154 |
+
|
| 155 |
+
# PyCharm
|
| 156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
+
#.idea/
|
app.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from utils import (
|
| 4 |
+
device,
|
| 5 |
+
jina_tokenizer,
|
| 6 |
+
jina_model,
|
| 7 |
+
embeddings_predict_relevance,
|
| 8 |
+
stsb_model,
|
| 9 |
+
stsb_tokenizer,
|
| 10 |
+
ms_model,
|
| 11 |
+
ms_tokenizer,
|
| 12 |
+
cross_encoder_predict_relevance
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
def predict(system_prompt, user_prompt, selected_model):
|
| 16 |
+
if selected_model == "jinaai/jina-embeddings-v2-small-en":
|
| 17 |
+
predicted_label, probabilities = embeddings_predict_relevance(system_prompt, user_prompt, jina_model, jina_tokenizer, device)
|
| 18 |
+
elif selected_model == "cross-encoder/stsb-roberta-base":
|
| 19 |
+
predicted_label, probabilities = cross_encoder_predict_relevance(system_prompt, user_prompt, stsb_model, stsb_tokenizer, device)
|
| 20 |
+
elif selected_model == "cross-encoder/ms-marco-MiniLM-L-6-v2":
|
| 21 |
+
predicted_label, probabilities = cross_encoder_predict_relevance(system_prompt, user_prompt, ms_model, ms_tokenizer, device)
|
| 22 |
+
|
| 23 |
+
probability_off_topic = probabilities[0][1] * 100
|
| 24 |
+
result = f'{probability_off_topic:.3f}% chance this is off-topic'
|
| 25 |
+
|
| 26 |
+
return result
|
| 27 |
+
|
| 28 |
+
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as app:
|
| 29 |
+
|
| 30 |
+
gr.Markdown("# Off-Topic Classification using Fine-tuned Embeddings and Cross-Encoder Models")
|
| 31 |
+
|
| 32 |
+
with gr.Row():
|
| 33 |
+
system_prompt = gr.Textbox(label="System Prompt")
|
| 34 |
+
user_prompt = gr.Textbox(label="User Prompt")
|
| 35 |
+
|
| 36 |
+
with gr.Row():
|
| 37 |
+
selected_model = gr.Dropdown(
|
| 38 |
+
["jinaai/jina-embeddings-v2-small-en",
|
| 39 |
+
"cross-encoder/stsb-roberta-base",
|
| 40 |
+
"cross-encoder/ms-marco-MiniLM-L-6-v2"],
|
| 41 |
+
label="Select a model")
|
| 42 |
+
|
| 43 |
+
# Button to run the prediction
|
| 44 |
+
get_classfication = gr.Button("Check Content")
|
| 45 |
+
|
| 46 |
+
output_result = gr.Textbox(label="Classification and Probabilities", lines=5)
|
| 47 |
+
|
| 48 |
+
get_classfication.click(
|
| 49 |
+
fn=predict,
|
| 50 |
+
inputs=[system_prompt, user_prompt, selected_model],
|
| 51 |
+
outputs=output_result
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
if __name__ == "__main__":
|
| 55 |
+
app.launch()
|
models/cross-encoder-ms-marco-MiniLM-L-6-v2-CrossEncoder-OffTopic-Classifier-20240918-090615.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:78a99fac3bc5b4729fee844d2154ea625aa9ceac2928cd648984ee1da5b8a203
|
| 3 |
+
size 91236352
|
models/cross-encoder-stsb-roberta-base-CrossEncoder-OffTopic-Classifier-20240920-174009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e90752828e92bc2f8ec567b85b3de5a0c8c5ddc331c1907d4dfa950624f71ce
|
| 3 |
+
size 500085976
|
models/jinaai-jina-embeddings-v2-small-en-TwinEncoder-OffTopic-Classifier-20240915-151858.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:223687abc28cf0fa198d326d2786374000396d841e66d684c022941da2ca9628
|
| 3 |
+
size 144076480
|
requirements.txt
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==23.2.1
|
| 2 |
+
annotated-types==0.7.0
|
| 3 |
+
anyio==4.6.0
|
| 4 |
+
certifi==2024.8.30
|
| 5 |
+
charset-normalizer==3.3.2
|
| 6 |
+
click==8.1.7
|
| 7 |
+
contourpy==1.3.0
|
| 8 |
+
cycler==0.12.1
|
| 9 |
+
fastapi==0.115.0
|
| 10 |
+
ffmpy==0.4.0
|
| 11 |
+
filelock==3.16.1
|
| 12 |
+
fonttools==4.54.0
|
| 13 |
+
fsspec==2024.9.0
|
| 14 |
+
gradio==4.44.0
|
| 15 |
+
gradio_client==1.3.0
|
| 16 |
+
h11==0.14.0
|
| 17 |
+
httpcore==1.0.5
|
| 18 |
+
httpx==0.27.2
|
| 19 |
+
huggingface-hub==0.25.1
|
| 20 |
+
idna==3.10
|
| 21 |
+
importlib_resources==6.4.5
|
| 22 |
+
Jinja2==3.1.4
|
| 23 |
+
kiwisolver==1.4.7
|
| 24 |
+
markdown-it-py==3.0.0
|
| 25 |
+
MarkupSafe==2.1.5
|
| 26 |
+
matplotlib==3.9.2
|
| 27 |
+
mdurl==0.1.2
|
| 28 |
+
mpmath==1.3.0
|
| 29 |
+
networkx==3.3
|
| 30 |
+
numpy==2.1.1
|
| 31 |
+
orjson==3.10.7
|
| 32 |
+
packaging==24.1
|
| 33 |
+
pandas==2.2.3
|
| 34 |
+
pillow==10.4.0
|
| 35 |
+
pydantic==2.9.2
|
| 36 |
+
pydantic_core==2.23.4
|
| 37 |
+
pydub==0.25.1
|
| 38 |
+
Pygments==2.18.0
|
| 39 |
+
pyparsing==3.1.4
|
| 40 |
+
python-dateutil==2.9.0.post0
|
| 41 |
+
python-multipart==0.0.10
|
| 42 |
+
pytz==2024.2
|
| 43 |
+
PyYAML==6.0.2
|
| 44 |
+
regex==2024.9.11
|
| 45 |
+
requests==2.32.3
|
| 46 |
+
rich==13.8.1
|
| 47 |
+
ruff==0.6.7
|
| 48 |
+
safetensors==0.4.5
|
| 49 |
+
semantic-version==2.10.0
|
| 50 |
+
setuptools==75.1.0
|
| 51 |
+
shellingham==1.5.4
|
| 52 |
+
six==1.16.0
|
| 53 |
+
sniffio==1.3.1
|
| 54 |
+
starlette==0.38.6
|
| 55 |
+
sympy==1.13.3
|
| 56 |
+
tokenizers==0.19.1
|
| 57 |
+
tomlkit==0.12.0
|
| 58 |
+
torch==2.4.1
|
| 59 |
+
tqdm==4.66.5
|
| 60 |
+
transformers==4.44.2
|
| 61 |
+
typer==0.12.5
|
| 62 |
+
typing_extensions==4.12.2
|
| 63 |
+
tzdata==2024.2
|
| 64 |
+
urllib3==2.2.3
|
| 65 |
+
uvicorn==0.30.6
|
| 66 |
+
websockets==12.0
|
utils.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from safetensors.torch import load_file
|
| 4 |
+
from transformers import AutoModel, AutoTokenizer
|
| 5 |
+
|
| 6 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 7 |
+
|
| 8 |
+
# Load the model state_dict from safetensors
|
| 9 |
+
def load_model_safetensors(model, load_path="model.safetensors"):
|
| 10 |
+
# Load the safetensors file
|
| 11 |
+
state_dict = load_file(load_path)
|
| 12 |
+
# Load the state dict into the model
|
| 13 |
+
model.load_state_dict(state_dict)
|
| 14 |
+
return model
|
| 15 |
+
|
| 16 |
+
##########################
|
| 17 |
+
# JINA EMBEDDINGS
|
| 18 |
+
##########################
|
| 19 |
+
|
| 20 |
+
# Jina Configs
|
| 21 |
+
JINA_CONTEXT_LEN = 1024
|
| 22 |
+
|
| 23 |
+
# Adapter for embeddings
|
| 24 |
+
class Adapter(nn.Module):
|
| 25 |
+
def __init__(self, hidden_size):
|
| 26 |
+
super(Adapter, self).__init__()
|
| 27 |
+
self.down_project = nn.Linear(hidden_size, hidden_size // 2)
|
| 28 |
+
self.activation = nn.ReLU()
|
| 29 |
+
self.up_project = nn.Linear(hidden_size // 2, hidden_size)
|
| 30 |
+
|
| 31 |
+
def forward(self, x):
|
| 32 |
+
down = self.down_project(x)
|
| 33 |
+
activated = self.activation(down)
|
| 34 |
+
up = self.up_project(activated)
|
| 35 |
+
return up + x # Residual connection
|
| 36 |
+
|
| 37 |
+
# Pool by attention score
|
| 38 |
+
class AttentionPooling(nn.Module):
|
| 39 |
+
def __init__(self, hidden_size):
|
| 40 |
+
super(AttentionPooling, self).__init__()
|
| 41 |
+
self.attention_weights = nn.Parameter(torch.randn(hidden_size))
|
| 42 |
+
|
| 43 |
+
def forward(self, hidden_states):
|
| 44 |
+
# hidden_states: [seq_len, batch_size, hidden_size]
|
| 45 |
+
scores = torch.matmul(hidden_states, self.attention_weights)
|
| 46 |
+
attention_weights = torch.softmax(scores, dim=0)
|
| 47 |
+
weighted_sum = torch.sum(attention_weights.unsqueeze(-1) * hidden_states, dim=0)
|
| 48 |
+
return weighted_sum
|
| 49 |
+
|
| 50 |
+
# Custom bi-encoder model with MLP layers for interaction
|
| 51 |
+
class CrossEncoderWithSharedBase(nn.Module):
|
| 52 |
+
def __init__(self, base_model, num_labels=2, num_heads=8):
|
| 53 |
+
super(CrossEncoderWithSharedBase, self).__init__()
|
| 54 |
+
# Shared pre-trained model
|
| 55 |
+
self.shared_encoder = base_model
|
| 56 |
+
hidden_size = self.shared_encoder.config.hidden_size
|
| 57 |
+
# Sentence-specific adapters
|
| 58 |
+
self.adapter1 = Adapter(hidden_size)
|
| 59 |
+
self.adapter2 = Adapter(hidden_size)
|
| 60 |
+
# Cross-attention layers
|
| 61 |
+
self.cross_attention_1_to_2 = nn.MultiheadAttention(hidden_size, num_heads)
|
| 62 |
+
self.cross_attention_2_to_1 = nn.MultiheadAttention(hidden_size, num_heads)
|
| 63 |
+
# Attention pooling layers
|
| 64 |
+
self.attn_pooling_1_to_2 = AttentionPooling(hidden_size)
|
| 65 |
+
self.attn_pooling_2_to_1 = AttentionPooling(hidden_size)
|
| 66 |
+
# Projection layer with non-linearity
|
| 67 |
+
self.projection_layer = nn.Sequential(
|
| 68 |
+
nn.Linear(hidden_size * 2, hidden_size),
|
| 69 |
+
nn.ReLU()
|
| 70 |
+
)
|
| 71 |
+
# Classifier with three hidden layers
|
| 72 |
+
self.classifier = nn.Sequential(
|
| 73 |
+
nn.Linear(hidden_size, hidden_size // 2),
|
| 74 |
+
nn.ReLU(),
|
| 75 |
+
nn.Dropout(0.1),
|
| 76 |
+
nn.Linear(hidden_size // 2, hidden_size // 4),
|
| 77 |
+
nn.ReLU(),
|
| 78 |
+
nn.Dropout(0.1),
|
| 79 |
+
nn.Linear(hidden_size // 4, num_labels)
|
| 80 |
+
)
|
| 81 |
+
def forward(self, input_ids1, attention_mask1, input_ids2, attention_mask2):
|
| 82 |
+
# Encode sentences
|
| 83 |
+
outputs1 = self.shared_encoder(input_ids1, attention_mask=attention_mask1)
|
| 84 |
+
outputs2 = self.shared_encoder(input_ids2, attention_mask=attention_mask2)
|
| 85 |
+
# Apply sentence-specific adapters
|
| 86 |
+
embeds1 = self.adapter1(outputs1.last_hidden_state)
|
| 87 |
+
embeds2 = self.adapter2(outputs2.last_hidden_state)
|
| 88 |
+
# Transpose for attention layers
|
| 89 |
+
embeds1 = embeds1.transpose(0, 1)
|
| 90 |
+
embeds2 = embeds2.transpose(0, 1)
|
| 91 |
+
# Cross-attention
|
| 92 |
+
cross_attn_1_to_2, _ = self.cross_attention_1_to_2(embeds1, embeds2, embeds2)
|
| 93 |
+
cross_attn_2_to_1, _ = self.cross_attention_2_to_1(embeds2, embeds1, embeds1)
|
| 94 |
+
# Attention pooling
|
| 95 |
+
pooled_1_to_2 = self.attn_pooling_1_to_2(cross_attn_1_to_2)
|
| 96 |
+
pooled_2_to_1 = self.attn_pooling_2_to_1(cross_attn_2_to_1)
|
| 97 |
+
# Concatenate and project
|
| 98 |
+
combined = torch.cat((pooled_1_to_2, pooled_2_to_1), dim=1)
|
| 99 |
+
projected = self.projection_layer(combined)
|
| 100 |
+
# Classification
|
| 101 |
+
logits = self.classifier(projected)
|
| 102 |
+
return logits
|
| 103 |
+
|
| 104 |
+
# Prediction function
|
| 105 |
+
def embeddings_predict_relevance(sentence1, sentence2, model, tokenizer, device):
|
| 106 |
+
model.eval()
|
| 107 |
+
inputs1 = tokenizer(sentence1, return_tensors="pt", truncation=True, padding="max_length", max_length=1024)
|
| 108 |
+
inputs2 = tokenizer(sentence2, return_tensors="pt", truncation=True, padding="max_length", max_length=1024)
|
| 109 |
+
input_ids1 = inputs1['input_ids'].to(device)
|
| 110 |
+
attention_mask1 = inputs1['attention_mask'].to(device)
|
| 111 |
+
input_ids2 = inputs2['input_ids'].to(device)
|
| 112 |
+
attention_mask2 = inputs2['attention_mask'].to(device)
|
| 113 |
+
with torch.no_grad():
|
| 114 |
+
outputs = model(input_ids1=input_ids1, attention_mask1=attention_mask1,
|
| 115 |
+
input_ids2=input_ids2, attention_mask2=attention_mask2)
|
| 116 |
+
probabilities = torch.softmax(outputs, dim=1)
|
| 117 |
+
predicted_label = torch.argmax(probabilities, dim=1).item()
|
| 118 |
+
return predicted_label, probabilities.cpu().numpy()
|
| 119 |
+
|
| 120 |
+
# Jina model
|
| 121 |
+
JINA_MODEL_NAME = "jinaai/jina-embeddings-v2-small-en"
|
| 122 |
+
jina_tokenizer = AutoTokenizer.from_pretrained(JINA_MODEL_NAME)
|
| 123 |
+
jina_base_model = AutoModel.from_pretrained(JINA_MODEL_NAME)
|
| 124 |
+
jina_model = CrossEncoderWithSharedBase(jina_base_model, num_labels=2)
|
| 125 |
+
jina_model = load_model_safetensors(jina_model, load_path="models/jinaai-jina-embeddings-v2-small-en-TwinEncoder-OffTopic-Classifier-20240915-151858.safetensors")
|
| 126 |
+
|
| 127 |
+
##########################
|
| 128 |
+
# CROSS-ENCODER
|
| 129 |
+
##########################
|
| 130 |
+
|
| 131 |
+
# STSB Configs
|
| 132 |
+
STSB_CONTEXT_LEN = 512
|
| 133 |
+
|
| 134 |
+
# ms-macro Configs
|
| 135 |
+
MS_CONTEXT_LEN = 512
|
| 136 |
+
|
| 137 |
+
class CrossEncoderWithMLP(nn.Module):
|
| 138 |
+
def __init__(self, base_model, num_labels=2):
|
| 139 |
+
super(CrossEncoderWithMLP, self).__init__()
|
| 140 |
+
|
| 141 |
+
# Existing cross-encoder model
|
| 142 |
+
self.base_model = base_model
|
| 143 |
+
# Hidden size of the base model
|
| 144 |
+
hidden_size = base_model.config.hidden_size
|
| 145 |
+
# MLP layers after combining the cross-encoders
|
| 146 |
+
self.mlp = nn.Sequential(
|
| 147 |
+
nn.Linear(hidden_size, hidden_size // 2), # Input: a single sentence
|
| 148 |
+
nn.ReLU(),
|
| 149 |
+
nn.Linear(hidden_size // 2, hidden_size // 4), # Reduce the size of the layer
|
| 150 |
+
nn.ReLU()
|
| 151 |
+
)
|
| 152 |
+
# Classifier head
|
| 153 |
+
self.classifier = nn.Linear(hidden_size // 4, num_labels)
|
| 154 |
+
|
| 155 |
+
def forward(self, input_ids, attention_mask):
|
| 156 |
+
# Encode the pair of sentences in one pass
|
| 157 |
+
outputs = self.base_model(input_ids, attention_mask)
|
| 158 |
+
pooled_output = outputs.pooler_output
|
| 159 |
+
# Pass the pooled output through mlp layers
|
| 160 |
+
mlp_output = self.mlp(pooled_output)
|
| 161 |
+
# Pass the final MLP output through the classifier
|
| 162 |
+
logits = self.classifier(mlp_output)
|
| 163 |
+
return logits
|
| 164 |
+
|
| 165 |
+
def cross_encoder_predict_relevance(sentence1, sentence2, model, tokenizer, device):
|
| 166 |
+
model.eval()
|
| 167 |
+
# Tokenize the pair of sentences
|
| 168 |
+
encoding = tokenizer(
|
| 169 |
+
sentence1, sentence2, # Takes in a two sentences as a pair
|
| 170 |
+
return_tensors="pt",
|
| 171 |
+
truncation=True,
|
| 172 |
+
padding="max_length",
|
| 173 |
+
max_length=512,
|
| 174 |
+
return_token_type_ids=False
|
| 175 |
+
)
|
| 176 |
+
# Extract the input_ids and attention mask
|
| 177 |
+
input_ids = encoding["input_ids"].to(device)
|
| 178 |
+
attention_mask = encoding["attention_mask"].to(device)
|
| 179 |
+
|
| 180 |
+
with torch.no_grad():
|
| 181 |
+
outputs = model(
|
| 182 |
+
input_ids=input_ids,
|
| 183 |
+
attention_mask=attention_mask
|
| 184 |
+
) # Returns logits
|
| 185 |
+
# Convert raw logits into probabilities for each class and get the predicted label
|
| 186 |
+
probabilities = torch.softmax(outputs, dim=1)
|
| 187 |
+
predicted_label = torch.argmax(probabilities, dim=1).item()
|
| 188 |
+
return predicted_label, probabilities.cpu().numpy()
|
| 189 |
+
|
| 190 |
+
# STSB model
|
| 191 |
+
STSB_MODEL_NAME = "cross-encoder/stsb-roberta-base"
|
| 192 |
+
stsb_tokenizer = AutoTokenizer.from_pretrained(STSB_MODEL_NAME)
|
| 193 |
+
stsb_base_model = AutoModel.from_pretrained(STSB_MODEL_NAME)
|
| 194 |
+
stsb_model = CrossEncoderWithMLP(stsb_base_model, num_labels=2)
|
| 195 |
+
stsb_model = load_model_safetensors(stsb_model, load_path="models/cross-encoder-stsb-roberta-base-CrossEncoder-OffTopic-Classifier-20240920-174009.safetensors")
|
| 196 |
+
|
| 197 |
+
# MS model
|
| 198 |
+
MS_MODEL_NAME = "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
| 199 |
+
ms_tokenizer = AutoTokenizer.from_pretrained(MS_MODEL_NAME)
|
| 200 |
+
ms_base_model = AutoModel.from_pretrained(MS_MODEL_NAME)
|
| 201 |
+
ms_model = CrossEncoderWithMLP(ms_base_model, num_labels=2)
|
| 202 |
+
ms_model = load_model_safetensors(ms_model, load_path="models/cross-encoder-ms-marco-MiniLM-L-6-v2-CrossEncoder-OffTopic-Classifier-20240918-090615.safetensors")
|