Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import spaces
|
| 3 |
+
import numpy as np
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from gtts import gTTS
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from huggingface_hub import InferenceClient
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
ASR_MODEL_NAME = "openai/whisper-small"
|
| 11 |
+
NLP_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 12 |
+
system_prompt = """"<s> [INST] You are Friday a helpful and conversational assistant. [/INST]"""
|
| 13 |
+
|
| 14 |
+
client = InferenceClient(NLP_MODEL_NAME)
|
| 15 |
+
|
| 16 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
| 17 |
+
|
| 18 |
+
pipe = pipeline(
|
| 19 |
+
task="automatic-speech-recognition",
|
| 20 |
+
model=ASR_MODEL_NAME,
|
| 21 |
+
device=device,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def generate(prompt, temperature=0.1, max_new_tokens=64, top_p=0.95, repetition_penalty=1.0):
|
| 26 |
+
temperature = float(temperature)
|
| 27 |
+
if temperature < 1e-2:
|
| 28 |
+
temperature = 1e-2
|
| 29 |
+
top_p = float(top_p)
|
| 30 |
+
|
| 31 |
+
generate_kwargs = dict(
|
| 32 |
+
temperature=temperature,
|
| 33 |
+
max_new_tokens=max_new_tokens,
|
| 34 |
+
top_p=top_p,
|
| 35 |
+
repetition_penalty=repetition_penalty,
|
| 36 |
+
do_sample=True,
|
| 37 |
+
seed=42,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
formatted_prompt = system_prompt + f""" {prompt} </s>"""
|
| 41 |
+
|
| 42 |
+
output = client.text_generation(
|
| 43 |
+
formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
|
| 44 |
+
|
| 45 |
+
print(output)
|
| 46 |
+
return output
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
@spaces.GPU(duration=60)
|
| 50 |
+
def transcribe(audio):
|
| 51 |
+
sr, y = audio
|
| 52 |
+
y = y.astype(np.float32)
|
| 53 |
+
y /= np.max(np.abs(y))
|
| 54 |
+
|
| 55 |
+
inputs = pipe({"sampling_rate": sr, "raw": y})["text"]
|
| 56 |
+
|
| 57 |
+
print("User transcription: ", inputs)
|
| 58 |
+
|
| 59 |
+
response = generate(inputs)
|
| 60 |
+
audio_response = gTTS(response)
|
| 61 |
+
audio_response.save("response.mp3")
|
| 62 |
+
|
| 63 |
+
print(audio_response)
|
| 64 |
+
|
| 65 |
+
return "response.mp3"
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
with gr.Blocks() as demo:
|
| 69 |
+
gr.HTML("<center><h1>Friday: AI Virtual Assistant<h1><center>")
|
| 70 |
+
|
| 71 |
+
with gr.Row():
|
| 72 |
+
audio_input = gr.Audio(label="Human", sources="microphone")
|
| 73 |
+
output_audio = gr.Audio(label="Friday", type="filepath",
|
| 74 |
+
interactive=False,
|
| 75 |
+
autoplay=True,
|
| 76 |
+
elem_classes="audio")
|
| 77 |
+
|
| 78 |
+
transcribe_btn = gr.Button("Transcribe")
|
| 79 |
+
transcribe_btn.click(fn=transcribe, inputs=audio_input,
|
| 80 |
+
outputs=output_audio)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
demo.queue()
|
| 84 |
+
demo.launch()
|