Spaces:
Running
Running
init
Browse files- app.py +91 -0
- baklava.jpg +0 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""This space is taken and modified from https://huggingface.co/spaces/merve/compare_clip_siglip"""
|
| 2 |
+
import os
|
| 3 |
+
os.environ["GRADIO_TEMP_DIR"] = "~/.cache/"
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoModel, AutoProcessor
|
| 7 |
+
import numpy as np
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import spaces
|
| 10 |
+
|
| 11 |
+
################################################################################
|
| 12 |
+
# Load the models
|
| 13 |
+
################################################################################
|
| 14 |
+
sg1_ckpt = "google/siglip-so400m-patch14-384"
|
| 15 |
+
siglip1_model = AutoModel.from_pretrained(sg1_ckpt, device_map="auto").eval()
|
| 16 |
+
siglip1_processor = AutoProcessor.from_pretrained(sg1_ckpt)
|
| 17 |
+
|
| 18 |
+
sg2_ckpt = "s0225/siglip2-so400m-patch14-384"
|
| 19 |
+
siglip2_model = AutoModel.from_pretrained(sg2_ckpt, device_map="auto").eval()
|
| 20 |
+
siglip2_processor = AutoProcessor.from_pretrained(sg2_ckpt)
|
| 21 |
+
|
| 22 |
+
################################################################################
|
| 23 |
+
# Utilities
|
| 24 |
+
################################################################################
|
| 25 |
+
def postprocess(output):
|
| 26 |
+
return {out["label"]: float(out["score"]) for out in output}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def postprocess_siglip(sg1_probs, sg2_probs, labels):
|
| 30 |
+
sg1_output = {labels[i]: float(np.array(sg1_probs[0])[i]) for i in range(len(labels))}
|
| 31 |
+
sg2_output = {labels[i]: float(np.array(sg2_probs[0])[i]) for i in range(len(labels))}
|
| 32 |
+
return sg1_output, sg2_output
|
| 33 |
+
|
| 34 |
+
@spaces.GPU
|
| 35 |
+
def siglip_detector(image, texts):
|
| 36 |
+
sg1_inputs = siglip1_processor(
|
| 37 |
+
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64
|
| 38 |
+
).to(siglip1_model.device)
|
| 39 |
+
|
| 40 |
+
sg2_inputs = siglip2_processor(
|
| 41 |
+
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64
|
| 42 |
+
).to(siglip2_model.device)
|
| 43 |
+
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
sg1_outputs = siglip1_model(**sg1_inputs)
|
| 46 |
+
sg2_outputs = siglip2_model(**sg2_inputs)
|
| 47 |
+
|
| 48 |
+
sg1_logits_per_image = sg1_outputs.logits_per_image
|
| 49 |
+
sg2_logits_per_image = sg2_outputs.logits_per_image
|
| 50 |
+
|
| 51 |
+
sg1_probs = torch.sigmoid(sg1_logits_per_image)
|
| 52 |
+
sg2_probs = torch.sigmoid(sg2_logits_per_image)
|
| 53 |
+
return sg1_probs, sg2_probs
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def infer(image, candidate_labels):
|
| 57 |
+
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
|
| 58 |
+
sg1_probs, sg2_probs = siglip_detector(image, candidate_labels)
|
| 59 |
+
return postprocess_siglip(
|
| 60 |
+
sg1_probs, sg2_probs, labels=candidate_labels
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
with gr.Blocks() as demo:
|
| 65 |
+
gr.Markdown("# Compare SigLIP 1 and SigLIP 2")
|
| 66 |
+
gr.Markdown(
|
| 67 |
+
"Compare the performance of SigLIP 1 and SigLIP 2 on zero-shot classification in this Space 👇"
|
| 68 |
+
)
|
| 69 |
+
with gr.Row():
|
| 70 |
+
with gr.Column():
|
| 71 |
+
image_input = gr.Image(type="pil")
|
| 72 |
+
text_input = gr.Textbox(label="Input a list of labels (comma seperated)")
|
| 73 |
+
run_button = gr.Button("Run", visible=True)
|
| 74 |
+
|
| 75 |
+
with gr.Column():
|
| 76 |
+
siglip1_output = gr.Label(label="SigLIP 1 Output", num_top_classes=3)
|
| 77 |
+
siglip2_output = gr.Label(label="SigLIP 2 Output", num_top_classes=3)
|
| 78 |
+
|
| 79 |
+
examples = [["./baklava.jpg", "baklava, souffle, tiramisu"]]
|
| 80 |
+
gr.Examples(
|
| 81 |
+
examples=examples,
|
| 82 |
+
inputs=[image_input, text_input],
|
| 83 |
+
outputs=[siglip1_output, siglip2_output],
|
| 84 |
+
fn=infer,
|
| 85 |
+
cache_examples=True,
|
| 86 |
+
)
|
| 87 |
+
run_button.click(
|
| 88 |
+
fn=infer, inputs=[image_input, text_input], outputs=[siglip1_output, siglip2_output]
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
demo.launch()
|
baklava.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
sentencepiece
|
| 5 |
+
pillow
|
| 6 |
+
protobuf
|
| 7 |
+
accelerate
|
| 8 |
+
spaces
|