Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,61 +2,30 @@ import spaces
|
|
| 2 |
import os
|
| 3 |
import requests
|
| 4 |
import time
|
| 5 |
-
|
| 6 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
import cv2
|
| 9 |
import numpy as np
|
| 10 |
-
|
| 11 |
-
from diffusers.models import AutoencoderKL
|
| 12 |
-
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 13 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
| 14 |
from RealESRGAN import RealESRGAN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
import gradio as gr
|
| 16 |
-
import
|
| 17 |
-
|
| 18 |
-
import shutil
|
| 19 |
-
import uuid
|
| 20 |
-
import json
|
| 21 |
-
import threading
|
| 22 |
-
|
| 23 |
-
# Constants
|
| 24 |
USE_TORCH_COMPILE = False
|
| 25 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 26 |
|
| 27 |
-
|
| 28 |
-
if not torch.cuda.is_available():
|
| 29 |
-
raise RuntimeError("CUDA is not available. This script requires a CUDA-capable GPU.")
|
| 30 |
-
|
| 31 |
-
device = torch.device("cuda")
|
| 32 |
-
print(f"Using device: {device}")
|
| 33 |
-
|
| 34 |
-
# Replace the global abort_status with an Event
|
| 35 |
-
abort_event = threading.Event()
|
| 36 |
-
|
| 37 |
-
css = """
|
| 38 |
-
.gradio-container {
|
| 39 |
-
max-width: 100% !important;
|
| 40 |
-
padding: 20px !important;
|
| 41 |
-
}
|
| 42 |
-
#component-0 {
|
| 43 |
-
height: auto !important;
|
| 44 |
-
overflow: visible !important;
|
| 45 |
-
}
|
| 46 |
-
"""
|
| 47 |
-
|
| 48 |
-
def abort_job():
|
| 49 |
-
if abort_event.is_set():
|
| 50 |
-
return "Job is already being aborted."
|
| 51 |
-
abort_event.set()
|
| 52 |
-
return "Aborting job... Processing will stop after the current frame."
|
| 53 |
-
|
| 54 |
-
def check_ffmpeg():
|
| 55 |
-
try:
|
| 56 |
-
subprocess.run(["ffmpeg", "-version"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True)
|
| 57 |
-
return True
|
| 58 |
-
except (subprocess.CalledProcessError, FileNotFoundError):
|
| 59 |
-
return False
|
| 60 |
|
| 61 |
def download_file(url, folder_path, filename):
|
| 62 |
if not os.path.exists(folder_path):
|
|
@@ -102,42 +71,44 @@ def timer_func(func):
|
|
| 102 |
return result
|
| 103 |
return wrapper
|
| 104 |
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
def __init__(self):
|
| 107 |
self.pipe = None
|
| 108 |
-
self.realesrgan_x2 = None
|
| 109 |
-
self.realesrgan_x4 = None
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
| 113 |
self.pipe = self.setup_pipeline()
|
|
|
|
| 114 |
self.pipe.to(device)
|
| 115 |
-
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 116 |
-
self.pipe.vae.set_attn_processor(AttnProcessor2_0())
|
| 117 |
if USE_TORCH_COMPILE:
|
|
|
|
| 118 |
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 119 |
|
| 120 |
-
|
| 121 |
-
self.realesrgan_x2 = RealESRGAN(device, scale=2)
|
| 122 |
-
self.realesrgan_x2.load_weights('models/upscalers/RealESRGAN_x2.pth', download=False)
|
| 123 |
-
|
| 124 |
-
if self.realesrgan_x4 is None:
|
| 125 |
-
self.realesrgan_x4 = RealESRGAN(device, scale=4)
|
| 126 |
-
self.realesrgan_x4.load_weights('models/upscalers/RealESRGAN_x4.pth', download=False)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
def setup_pipeline(self):
|
|
|
|
| 130 |
controlnet = ControlNetModel.from_single_file(
|
| 131 |
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
|
| 132 |
)
|
| 133 |
-
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
| 134 |
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
|
| 135 |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
|
| 136 |
model_path,
|
| 137 |
controlnet=controlnet,
|
| 138 |
torch_dtype=torch.float16,
|
| 139 |
use_safetensors=True,
|
| 140 |
-
safety_checker=
|
| 141 |
)
|
| 142 |
vae = AutoencoderKL.from_single_file(
|
| 143 |
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
|
|
@@ -154,291 +125,227 @@ class ModelManager:
|
|
| 154 |
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
|
| 155 |
return pipe
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
prompt = "masterpiece, best quality, highres"
|
| 162 |
-
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
| 163 |
-
|
| 164 |
-
options = {
|
| 165 |
-
"prompt": [prompt] * len(input_images),
|
| 166 |
-
"negative_prompt": [negative_prompt] * len(input_images),
|
| 167 |
-
"image": condition_images,
|
| 168 |
-
"control_image": condition_images,
|
| 169 |
-
"width": condition_images[0].size[0],
|
| 170 |
-
"height": condition_images[0].size[1],
|
| 171 |
-
"strength": strength,
|
| 172 |
-
"num_inference_steps": num_inference_steps,
|
| 173 |
-
"guidance_scale": guidance_scale,
|
| 174 |
-
"generator": torch.Generator(device=device).manual_seed(0),
|
| 175 |
-
}
|
| 176 |
-
|
| 177 |
-
print("Running inference on batch...")
|
| 178 |
-
results = self.pipe(**options).images
|
| 179 |
-
print("Batch processing completed successfully")
|
| 180 |
-
|
| 181 |
-
return results
|
| 182 |
-
|
| 183 |
-
def prepare_image(self, input_image, resolution, hdr):
|
| 184 |
-
condition_image = self.resize_and_upscale(input_image, resolution)
|
| 185 |
-
condition_image = self.create_hdr_effect(condition_image, hdr)
|
| 186 |
-
return condition_image
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
scale = 2 if resolution <= 2048 else 4
|
| 191 |
-
|
| 192 |
-
if isinstance(input_image, str):
|
| 193 |
-
input_image = Image.open(input_image).convert("RGB")
|
| 194 |
-
elif isinstance(input_image, io.IOBase):
|
| 195 |
-
input_image = Image.open(input_image).convert("RGB")
|
| 196 |
-
elif isinstance(input_image, Image.Image):
|
| 197 |
-
input_image = input_image.convert("RGB")
|
| 198 |
-
elif isinstance(input_image, np.ndarray):
|
| 199 |
-
input_image = Image.fromarray(input_image).convert("RGB")
|
| 200 |
-
else:
|
| 201 |
-
raise ValueError(f"Unsupported input type for input_image: {type(input_image)}")
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
-
|
|
|
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
return hdr_result
|
| 231 |
-
|
| 232 |
-
model_manager = ModelManager()
|
| 233 |
-
model_manager.load_models() # Ensure models are loaded
|
| 234 |
-
|
| 235 |
-
def extract_frames(video_path, output_folder):
|
| 236 |
-
os.makedirs(output_folder, exist_ok=True)
|
| 237 |
-
command = [
|
| 238 |
-
'ffmpeg',
|
| 239 |
-
'-i', video_path,
|
| 240 |
-
'-vf', 'fps=30',
|
| 241 |
-
f'{output_folder}/frame_%06d.png'
|
| 242 |
-
]
|
| 243 |
-
subprocess.run(command, check=True)
|
| 244 |
-
|
| 245 |
-
def frames_to_video(input_folder, output_path, fps, original_video_path):
|
| 246 |
-
# First, create the video from frames without audio
|
| 247 |
-
temp_output_path = output_path + "_temp.mp4"
|
| 248 |
-
video_command = [
|
| 249 |
-
'ffmpeg',
|
| 250 |
-
'-framerate', str(fps),
|
| 251 |
-
'-i', f'{input_folder}/frame_%06d.png',
|
| 252 |
-
'-c:v', 'libx264',
|
| 253 |
-
'-pix_fmt', 'yuv420p',
|
| 254 |
-
temp_output_path
|
| 255 |
-
]
|
| 256 |
-
subprocess.run(video_command, check=True)
|
| 257 |
-
|
| 258 |
-
# Then, copy the audio from the original video and add it to the new video
|
| 259 |
-
final_command = [
|
| 260 |
-
'ffmpeg',
|
| 261 |
-
'-i', temp_output_path,
|
| 262 |
-
'-i', original_video_path,
|
| 263 |
-
'-c:v', 'copy',
|
| 264 |
-
'-c:a', 'aac',
|
| 265 |
-
'-map', '0:v:0',
|
| 266 |
-
'-map', '1:a:0?',
|
| 267 |
-
'-shortest',
|
| 268 |
-
output_path
|
| 269 |
-
]
|
| 270 |
-
subprocess.run(final_command, check=True)
|
| 271 |
-
|
| 272 |
-
# Remove the temporary file
|
| 273 |
-
os.remove(temp_output_path)
|
| 274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
@timer_func
|
| 277 |
-
def
|
| 278 |
-
|
| 279 |
-
|
| 280 |
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
"num_inference_steps": num_inference_steps,
|
| 291 |
-
"strength": strength,
|
| 292 |
-
"hdr": hdr,
|
| 293 |
-
"guidance_scale": guidance_scale,
|
| 294 |
-
"max_frames": max_frames,
|
| 295 |
-
"frame_interval": frame_interval,
|
| 296 |
-
"preserve_frames": preserve_frames,
|
| 297 |
-
"batch_size": batch_size
|
| 298 |
-
}
|
| 299 |
-
with open(os.path.join(job_folder, "config.json"), "w") as f:
|
| 300 |
-
json.dump(config, f)
|
| 301 |
-
|
| 302 |
-
# If input_video is a file object or has a 'name' attribute, use its name
|
| 303 |
-
if isinstance(input_video, io.IOBase) or hasattr(input_video, 'name'):
|
| 304 |
-
input_video = input_video.name
|
| 305 |
-
|
| 306 |
-
# Set up folders
|
| 307 |
-
frames_folder = os.path.join(job_folder, "video_frames")
|
| 308 |
-
processed_frames_folder = os.path.join(job_folder, "processed_frames")
|
| 309 |
-
os.makedirs(frames_folder, exist_ok=True)
|
| 310 |
-
os.makedirs(processed_frames_folder, exist_ok=True)
|
| 311 |
-
|
| 312 |
-
# Extract frames
|
| 313 |
-
progress(0.1, desc="Extracting frames...")
|
| 314 |
-
extract_frames(input_video, frames_folder)
|
| 315 |
-
|
| 316 |
-
# Process selected frames
|
| 317 |
-
frame_files = sorted(os.listdir(frames_folder))
|
| 318 |
-
total_frames = len(frame_files)
|
| 319 |
-
frames_to_process = min(max_frames, total_frames) if max_frames else total_frames
|
| 320 |
-
|
| 321 |
-
try:
|
| 322 |
-
progress(0.2, desc="Processing frames...")
|
| 323 |
-
for i in tqdm(range(0, frames_to_process, batch_size), desc="Processing batches"):
|
| 324 |
-
if abort_event.is_set():
|
| 325 |
-
print("Job aborted. Stopping processing of new frames.")
|
| 326 |
-
break
|
| 327 |
-
|
| 328 |
-
batch_frames = frame_files[i:min(i+batch_size, frames_to_process)]
|
| 329 |
-
input_images = [Image.open(os.path.join(frames_folder, frame)) for frame in batch_frames]
|
| 330 |
-
|
| 331 |
-
processed_images = model_manager.process_image_batch(input_images, resolution, num_inference_steps, strength, hdr, guidance_scale)
|
| 332 |
-
|
| 333 |
-
for frame_file, processed_image in zip(batch_frames, processed_images):
|
| 334 |
-
output_frame_path = os.path.join(processed_frames_folder, frame_file)
|
| 335 |
-
if not preserve_frames or not os.path.exists(output_frame_path):
|
| 336 |
-
processed_image.save(output_frame_path)
|
| 337 |
-
|
| 338 |
-
progress((0.2 + 0.7 * (i + batch_size) / frames_to_process), desc=f"Processed batch {i//batch_size + 1}/{(frames_to_process-1)//batch_size + 1}")
|
| 339 |
-
|
| 340 |
-
# Always attempt to reassemble video
|
| 341 |
-
progress(0.9, desc="Reassembling video...")
|
| 342 |
-
input_filename = os.path.splitext(os.path.basename(input_video))[0]
|
| 343 |
-
output_video = os.path.join(job_folder, f"{input_filename}_upscaled.mp4")
|
| 344 |
-
frames_to_video(processed_frames_folder, output_video, 30, input_video)
|
| 345 |
-
|
| 346 |
-
if abort_event.is_set():
|
| 347 |
-
progress(1.0, desc="Video processing aborted, but partial result saved")
|
| 348 |
-
print("Video processing aborted, but partial result saved")
|
| 349 |
else:
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
else:
|
| 376 |
-
|
|
|
|
|
|
|
| 377 |
|
| 378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
|
|
|
|
|
|
|
| 416 |
with gr.Row():
|
| 417 |
-
with gr.Column(
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
abort_button.click(abort_job, inputs=[], outputs=status)
|
| 442 |
-
|
| 443 |
-
# Launch the Gradio app
|
| 444 |
-
iface.launch()
|
|
|
|
| 2 |
import os
|
| 3 |
import requests
|
| 4 |
import time
|
| 5 |
+
|
| 6 |
import torch
|
| 7 |
+
|
| 8 |
+
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler
|
| 9 |
+
from diffusers.models import AutoencoderKL
|
| 10 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 11 |
+
|
| 12 |
from PIL import Image
|
| 13 |
import cv2
|
| 14 |
import numpy as np
|
| 15 |
+
|
|
|
|
|
|
|
|
|
|
| 16 |
from RealESRGAN import RealESRGAN
|
| 17 |
+
|
| 18 |
+
import random
|
| 19 |
+
import math
|
| 20 |
+
from scipy.signal import gaussian
|
| 21 |
+
|
| 22 |
import gradio as gr
|
| 23 |
+
from gradio_imageslider import ImageSlider
|
| 24 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
USE_TORCH_COMPILE = False
|
| 26 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 27 |
|
| 28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
def download_file(url, folder_path, filename):
|
| 31 |
if not os.path.exists(folder_path):
|
|
|
|
| 71 |
return result
|
| 72 |
return wrapper
|
| 73 |
|
| 74 |
+
def get_scheduler(scheduler_name, config):
|
| 75 |
+
if scheduler_name == "DDIM":
|
| 76 |
+
return DDIMScheduler.from_config(config)
|
| 77 |
+
elif scheduler_name == "DPM++ 3M SDE Karras":
|
| 78 |
+
return DPMSolverMultistepScheduler.from_config(config, algorithm_type="sde-dpmsolver++", use_karras_sigmas=True)
|
| 79 |
+
elif scheduler_name == "DPM++ 3M Karras":
|
| 80 |
+
return DPMSolverMultistepScheduler.from_config(config, algorithm_type="dpmsolver++", use_karras_sigmas=True)
|
| 81 |
+
else:
|
| 82 |
+
raise ValueError(f"Unknown scheduler: {scheduler_name}")
|
| 83 |
+
|
| 84 |
+
class LazyLoadPipeline:
|
| 85 |
def __init__(self):
|
| 86 |
self.pipe = None
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
@timer_func
|
| 89 |
+
def load(self):
|
| 90 |
+
if self.pipe is None:
|
| 91 |
+
print("Starting to load the pipeline...")
|
| 92 |
self.pipe = self.setup_pipeline()
|
| 93 |
+
print(f"Moving pipeline to device: {device}")
|
| 94 |
self.pipe.to(device)
|
|
|
|
|
|
|
| 95 |
if USE_TORCH_COMPILE:
|
| 96 |
+
print("Compiling the model...")
|
| 97 |
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 98 |
|
| 99 |
+
@timer_func
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
def setup_pipeline(self):
|
| 101 |
+
print("Setting up the pipeline...")
|
| 102 |
controlnet = ControlNetModel.from_single_file(
|
| 103 |
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
|
| 104 |
)
|
|
|
|
| 105 |
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
|
| 106 |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
|
| 107 |
model_path,
|
| 108 |
controlnet=controlnet,
|
| 109 |
torch_dtype=torch.float16,
|
| 110 |
use_safetensors=True,
|
| 111 |
+
safety_checker=None
|
| 112 |
)
|
| 113 |
vae = AutoencoderKL.from_single_file(
|
| 114 |
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
|
|
|
|
| 125 |
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
|
| 126 |
return pipe
|
| 127 |
|
| 128 |
+
def set_scheduler(self, scheduler_name):
|
| 129 |
+
if self.pipe is not None:
|
| 130 |
+
self.pipe.scheduler = get_scheduler(scheduler_name, self.pipe.scheduler.config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
def __call__(self, *args, **kwargs):
|
| 133 |
+
return self.pipe(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
class LazyRealESRGAN:
|
| 136 |
+
def __init__(self, device, scale):
|
| 137 |
+
self.device = device
|
| 138 |
+
self.scale = scale
|
| 139 |
+
self.model = None
|
| 140 |
|
| 141 |
+
def load_model(self):
|
| 142 |
+
if self.model is None:
|
| 143 |
+
self.model = RealESRGAN(self.device, scale=self.scale)
|
| 144 |
+
self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)
|
| 145 |
+
def predict(self, img):
|
| 146 |
+
self.load_model()
|
| 147 |
+
return self.model.predict(img)
|
| 148 |
|
| 149 |
+
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
|
| 150 |
+
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
|
| 151 |
|
| 152 |
+
@timer_func
|
| 153 |
+
def resize_and_upscale(input_image, resolution):
|
| 154 |
+
scale = 2 if resolution <= 2048 else 4
|
| 155 |
+
input_image = input_image.convert("RGB")
|
| 156 |
+
W, H = input_image.size
|
| 157 |
+
k = float(resolution) / min(H, W)
|
| 158 |
+
H = int(round(H * k / 64.0)) * 64
|
| 159 |
+
W = int(round(W * k / 64.0)) * 64
|
| 160 |
+
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
| 161 |
+
if scale == 2:
|
| 162 |
+
img = lazy_realesrgan_x2.predict(img)
|
| 163 |
+
else:
|
| 164 |
+
img = lazy_realesrgan_x4.predict(img)
|
| 165 |
+
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
@timer_func
|
| 168 |
+
def create_hdr_effect(original_image, hdr):
|
| 169 |
+
if hdr == 0:
|
| 170 |
+
return original_image
|
| 171 |
+
cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
|
| 172 |
+
factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
|
| 173 |
+
1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
|
| 174 |
+
1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
|
| 175 |
+
images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
|
| 176 |
+
merge_mertens = cv2.createMergeMertens()
|
| 177 |
+
hdr_image = merge_mertens.process(images)
|
| 178 |
+
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
| 179 |
+
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
| 180 |
+
|
| 181 |
+
lazy_pipe = LazyLoadPipeline()
|
| 182 |
+
lazy_pipe.load()
|
| 183 |
|
| 184 |
@timer_func
|
| 185 |
+
def progressive_upscale(input_image, target_resolution, steps=3):
|
| 186 |
+
current_image = input_image.convert("RGB")
|
| 187 |
+
current_size = max(current_image.size)
|
| 188 |
|
| 189 |
+
for _ in range(steps):
|
| 190 |
+
if current_size >= target_resolution:
|
| 191 |
+
break
|
| 192 |
+
|
| 193 |
+
scale_factor = min(2, target_resolution / current_size)
|
| 194 |
+
new_size = (int(current_image.width * scale_factor), int(current_image.height * scale_factor))
|
| 195 |
+
|
| 196 |
+
if scale_factor <= 1.5:
|
| 197 |
+
current_image = current_image.resize(new_size, Image.LANCZOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
else:
|
| 199 |
+
current_image = lazy_realesrgan_x2.predict(current_image)
|
| 200 |
+
|
| 201 |
+
current_size = max(current_image.size)
|
| 202 |
+
|
| 203 |
+
# Final resize to exact target resolution
|
| 204 |
+
if current_size != target_resolution:
|
| 205 |
+
aspect_ratio = current_image.width / current_image.height
|
| 206 |
+
if current_image.width > current_image.height:
|
| 207 |
+
new_size = (target_resolution, int(target_resolution / aspect_ratio))
|
| 208 |
+
else:
|
| 209 |
+
new_size = (int(target_resolution * aspect_ratio), target_resolution)
|
| 210 |
+
current_image = current_image.resize(new_size, Image.LANCZOS)
|
| 211 |
+
|
| 212 |
+
return current_image
|
| 213 |
+
|
| 214 |
+
def prepare_image(input_image, resolution, hdr):
|
| 215 |
+
upscaled_image = progressive_upscale(input_image, resolution)
|
| 216 |
+
return create_hdr_effect(upscaled_image, hdr)
|
| 217 |
+
|
| 218 |
+
def create_gaussian_weight(tile_size, sigma=0.3):
|
| 219 |
+
x = np.linspace(-1, 1, tile_size)
|
| 220 |
+
y = np.linspace(-1, 1, tile_size)
|
| 221 |
+
xx, yy = np.meshgrid(x, y)
|
| 222 |
+
gaussian_weight = np.exp(-(xx**2 + yy**2) / (2 * sigma**2))
|
| 223 |
+
return gaussian_weight
|
| 224 |
+
|
| 225 |
+
def adaptive_tile_size(image_size, base_tile_size=512, max_tile_size=1024):
|
| 226 |
+
w, h = image_size
|
| 227 |
+
aspect_ratio = w / h
|
| 228 |
+
if aspect_ratio > 1:
|
| 229 |
+
tile_w = min(w, max_tile_size)
|
| 230 |
+
tile_h = min(int(tile_w / aspect_ratio), max_tile_size)
|
| 231 |
else:
|
| 232 |
+
tile_h = min(h, max_tile_size)
|
| 233 |
+
tile_w = min(int(tile_h * aspect_ratio), max_tile_size)
|
| 234 |
+
return max(tile_w, base_tile_size), max(tile_h, base_tile_size)
|
| 235 |
|
| 236 |
+
def process_tile(tile, num_inference_steps, strength, guidance_scale, controlnet_strength):
|
| 237 |
+
prompt = "masterpiece, best quality, highres"
|
| 238 |
+
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
| 239 |
+
|
| 240 |
+
options = {
|
| 241 |
+
"prompt": prompt,
|
| 242 |
+
"negative_prompt": negative_prompt,
|
| 243 |
+
"image": tile,
|
| 244 |
+
"control_image": tile,
|
| 245 |
+
"num_inference_steps": num_inference_steps,
|
| 246 |
+
"strength": strength,
|
| 247 |
+
"guidance_scale": guidance_scale,
|
| 248 |
+
"controlnet_conditioning_scale": float(controlnet_strength),
|
| 249 |
+
"generator": torch.Generator(device=device).manual_seed(random.randint(0, 2147483647)),
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
return np.array(lazy_pipe(**options).images[0])
|
| 253 |
|
| 254 |
+
@spaces.GPU
|
| 255 |
+
@timer_func
|
| 256 |
+
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name):
|
| 257 |
+
print("Starting image processing...")
|
| 258 |
+
torch.cuda.empty_cache()
|
| 259 |
+
lazy_pipe.set_scheduler(scheduler_name)
|
| 260 |
+
|
| 261 |
+
# Convert input_image to numpy array
|
| 262 |
+
input_array = np.array(input_image)
|
| 263 |
+
|
| 264 |
+
# Prepare the condition image
|
| 265 |
+
condition_image = prepare_image(input_image, resolution, hdr)
|
| 266 |
+
W, H = condition_image.size
|
| 267 |
+
|
| 268 |
+
# Adaptive tiling
|
| 269 |
+
tile_width, tile_height = adaptive_tile_size((W, H))
|
| 270 |
+
|
| 271 |
+
# Calculate the number of tiles
|
| 272 |
+
overlap = min(64, tile_width // 8, tile_height // 8) # Adaptive overlap
|
| 273 |
+
num_tiles_x = math.ceil((W - overlap) / (tile_width - overlap))
|
| 274 |
+
num_tiles_y = math.ceil((H - overlap) / (tile_height - overlap))
|
| 275 |
+
|
| 276 |
+
# Create a blank canvas for the result
|
| 277 |
+
result = np.zeros((H, W, 3), dtype=np.float32)
|
| 278 |
+
weight_sum = np.zeros((H, W, 1), dtype=np.float32)
|
| 279 |
+
|
| 280 |
+
# Create gaussian weight
|
| 281 |
+
gaussian_weight = create_gaussian_weight(max(tile_width, tile_height))
|
| 282 |
+
|
| 283 |
+
for i in range(num_tiles_y):
|
| 284 |
+
for j in range(num_tiles_x):
|
| 285 |
+
# Calculate tile coordinates
|
| 286 |
+
left = j * (tile_width - overlap)
|
| 287 |
+
top = i * (tile_height - overlap)
|
| 288 |
+
right = min(left + tile_width, W)
|
| 289 |
+
bottom = min(top + tile_height, H)
|
| 290 |
+
|
| 291 |
+
# Adjust tile size if it's at the edge
|
| 292 |
+
current_tile_size = (bottom - top, right - left)
|
| 293 |
+
|
| 294 |
+
tile = condition_image.crop((left, top, right, bottom))
|
| 295 |
+
tile = tile.resize((tile_width, tile_height))
|
| 296 |
+
|
| 297 |
+
# Process the tile
|
| 298 |
+
result_tile = process_tile(tile, num_inference_steps, strength, guidance_scale, controlnet_strength)
|
| 299 |
+
|
| 300 |
+
# Apply gaussian weighting
|
| 301 |
+
if current_tile_size != (tile_width, tile_height):
|
| 302 |
+
result_tile = cv2.resize(result_tile, current_tile_size[::-1])
|
| 303 |
+
tile_weight = cv2.resize(gaussian_weight, current_tile_size[::-1])
|
| 304 |
+
else:
|
| 305 |
+
tile_weight = gaussian_weight[:current_tile_size[0], :current_tile_size[1]]
|
| 306 |
+
|
| 307 |
+
# Add the tile to the result with gaussian weighting
|
| 308 |
+
result[top:bottom, left:right] += result_tile * tile_weight[:, :, np.newaxis]
|
| 309 |
+
weight_sum[top:bottom, left:right] += tile_weight[:, :, np.newaxis]
|
| 310 |
+
|
| 311 |
+
# Normalize the result
|
| 312 |
+
final_result = (result / weight_sum).astype(np.uint8)
|
| 313 |
+
|
| 314 |
+
print("Image processing completed successfully")
|
| 315 |
+
|
| 316 |
+
return [input_array, final_result]
|
| 317 |
+
|
| 318 |
+
title = """<h1 align="center">Tiled Upscaler V2</h1>
|
| 319 |
+
<p align="center">The main ideas come from</p>
|
| 320 |
+
<p><center>
|
| 321 |
+
<a href="https://github.com/philz1337x/clarity-upscaler" target="_blank">[philz1337x]</a>
|
| 322 |
+
<a href="https://github.com/BatouResearch/controlnet-tile-upscale" target="_blank">[Pau-Lozano]</a>
|
| 323 |
+
</center></p>
|
| 324 |
+
"""
|
| 325 |
|
| 326 |
+
with gr.Blocks() as demo:
|
| 327 |
+
gr.HTML(title)
|
| 328 |
with gr.Row():
|
| 329 |
+
with gr.Column():
|
| 330 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
| 331 |
+
run_button = gr.Button("Enhance Image")
|
| 332 |
+
with gr.Column():
|
| 333 |
+
output_slider = ImageSlider(label="Before / After", type="numpy")
|
| 334 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 335 |
+
resolution = gr.Slider(minimum=128, maximum=2048, value=1536, step=128, label="Resolution")
|
| 336 |
+
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
|
| 337 |
+
strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
|
| 338 |
+
hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
|
| 339 |
+
guidance_scale = gr.Slider(minimum=0, maximum=20, value=6, step=0.5, label="Guidance Scale")
|
| 340 |
+
controlnet_strength = gr.Slider(minimum=0.0, maximum=2.0, value=0.75, step=0.05, label="ControlNet Strength")
|
| 341 |
+
scheduler_name = gr.Dropdown(
|
| 342 |
+
choices=["DDIM", "DPM++ 3M SDE Karras", "DPM++ 3M Karras"],
|
| 343 |
+
value="DDIM",
|
| 344 |
+
label="Scheduler"
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
run_button.click(fn=gradio_process_image,
|
| 348 |
+
inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name],
|
| 349 |
+
outputs=output_slider)
|
| 350 |
+
|
| 351 |
+
demo.launch(debug=True, share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|