Update app.py
Browse files
app.py
CHANGED
|
@@ -1,1491 +1,49 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from datetime import datetime
|
| 3 |
-
import random
|
| 4 |
-
import base64
|
| 5 |
-
from io import BytesIO
|
| 6 |
-
from PIL import Image
|
| 7 |
import sys
|
| 8 |
import streamlit as st
|
| 9 |
-
from
|
| 10 |
-
|
| 11 |
-
from gradio_client import Client
|
| 12 |
-
import pandas as pd
|
| 13 |
-
import PyPDF2 # For handling PDF files
|
| 14 |
-
import kagglehub
|
| 15 |
-
|
| 16 |
-
# ββββββββββββββββββββββββββββββββ Environment Variables / Constants βββββββββββββββββββββββββ
|
| 17 |
-
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
|
| 18 |
-
BRAVE_KEY = os.getenv("SERPHOUSE_API_KEY", "") # Keep this name
|
| 19 |
-
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"
|
| 20 |
-
BRAVE_VIDEO_ENDPOINT = "https://api.search.brave.com/res/v1/videos/search"
|
| 21 |
-
BRAVE_NEWS_ENDPOINT = "https://api.search.brave.com/res/v1/news/search"
|
| 22 |
-
IMAGE_API_URL = "http://211.233.58.201:7896"
|
| 23 |
-
MAX_TOKENS = 7999
|
| 24 |
-
KAGGLE_API_KEY = os.getenv("KDATA_API", "")
|
| 25 |
-
|
| 26 |
-
# Set Kaggle API key
|
| 27 |
-
os.environ["KAGGLE_KEY"] = KAGGLE_API_KEY
|
| 28 |
-
|
| 29 |
-
# Analysis modes and style definitions
|
| 30 |
-
ANALYSIS_MODES = {
|
| 31 |
-
"price_forecast": "λμ°λ¬Ό κ°κ²© μμΈ‘κ³Ό μμ₯ λΆμ",
|
| 32 |
-
"market_trend": "μμ₯ λν₯ λ° μμ ν¨ν΄ λΆμ",
|
| 33 |
-
"production_analysis": "μμ°λ λΆμ λ° μλ μ보 μ λ§",
|
| 34 |
-
"agricultural_policy": "λμ
μ μ±
λ° κ·μ μν₯ λΆμ",
|
| 35 |
-
"climate_impact": "κΈ°ν λ³νκ° λμ
μ λ―ΈμΉλ μν₯ λΆμ"
|
| 36 |
-
}
|
| 37 |
-
|
| 38 |
-
RESPONSE_STYLES = {
|
| 39 |
-
"professional": "μ λ¬Έμ μ΄κ³ νμ μ μΈ λΆμ",
|
| 40 |
-
"simple": "μ½κ² μ΄ν΄ν μ μλ κ°κ²°ν μ€λͺ
",
|
| 41 |
-
"detailed": "μμΈν ν΅κ³ κΈ°λ° κΉμ΄ μλ λΆμ",
|
| 42 |
-
"action_oriented": "μ€ν κ°λ₯ν μ‘°μΈκ³Ό μΆμ² μ€μ¬"
|
| 43 |
-
}
|
| 44 |
-
|
| 45 |
-
# Example search queries
|
| 46 |
-
EXAMPLE_QUERIES = {
|
| 47 |
-
"example1": "μ κ°κ²© μΆμΈ λ° ν₯ν 6κ°μ μ λ§μ λΆμν΄μ£ΌμΈμ",
|
| 48 |
-
"example2": "κΈ°ν λ³νλ‘ νκ΅ κ³ΌμΌ μμ° μ λ΅κ³Ό μμ μμΈ‘ λ³΄κ³ μλ₯Ό μμ±νλΌ.",
|
| 49 |
-
"example3": "2025λ
λΆν° 2030λ
κΉμ§ μΆ©λΆ μ¦νκ΅°μμ μ¬λ°°νλ©΄ μ λ§ν μλ¬Όμ? μμ΅μ±κ³Ό κ΄λ¦¬μ±μ΄ μ’μμΌνλ€"
|
| 50 |
-
}
|
| 51 |
-
|
| 52 |
-
# ββββββββββββββββββββββββββββββββ Logging ββββββββββββββββββββββββββββββββ
|
| 53 |
-
logging.basicConfig(level=logging.INFO,
|
| 54 |
-
format="%(asctime)s - %(levelname)s - %(message)s")
|
| 55 |
-
|
| 56 |
-
# ββββββββββββββββββββββββββββββββ OpenAI Client ββββββββββββββββββββββββββ
|
| 57 |
-
|
| 58 |
-
@st.cache_resource
|
| 59 |
-
def get_openai_client():
|
| 60 |
-
if not OPENAI_API_KEY:
|
| 61 |
-
raise RuntimeError("OPENAI_API_KEY νκ²½ λ³μκ° μ€μ λμ§ μμμ΅λλ€.")
|
| 62 |
-
return OpenAI(
|
| 63 |
-
api_key=OPENAI_API_KEY,
|
| 64 |
-
timeout=60.0,
|
| 65 |
-
max_retries=3
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
# ββββββββββββββββββββββββββββββ Kaggle Dataset Access ββββββββββββββββββββββ
|
| 69 |
-
@st.cache_resource
|
| 70 |
-
def load_agriculture_dataset():
|
| 71 |
-
|
| 72 |
-
try:
|
| 73 |
-
path = kagglehub.dataset_download("unitednations/global-food-agriculture-statistics")
|
| 74 |
-
logging.info(f"Kaggle dataset downloaded to: {path}")
|
| 75 |
-
|
| 76 |
-
# Load metadata about available files
|
| 77 |
-
available_files = []
|
| 78 |
-
for root, dirs, files in os.walk(path):
|
| 79 |
-
for file in files:
|
| 80 |
-
if file.endswith('.csv'):
|
| 81 |
-
file_path = os.path.join(root, file)
|
| 82 |
-
file_size = os.path.getsize(file_path) / (1024 * 1024) # Size in MB
|
| 83 |
-
available_files.append({
|
| 84 |
-
'name': file,
|
| 85 |
-
'path': file_path,
|
| 86 |
-
'size_mb': round(file_size, 2)
|
| 87 |
-
})
|
| 88 |
-
|
| 89 |
-
return {
|
| 90 |
-
'base_path': path,
|
| 91 |
-
'files': available_files
|
| 92 |
-
}
|
| 93 |
-
except Exception as e:
|
| 94 |
-
logging.error(f"Error loading Kaggle dataset: {e}")
|
| 95 |
-
return None
|
| 96 |
-
|
| 97 |
-
# New function to load Advanced Soybean Agricultural Dataset
|
| 98 |
-
@st.cache_resource
|
| 99 |
-
def load_soybean_dataset():
|
| 100 |
-
|
| 101 |
-
try:
|
| 102 |
-
path = kagglehub.dataset_download("wisam1985/advanced-soybean-agricultural-dataset-2025")
|
| 103 |
-
logging.info(f"Soybean dataset downloaded to: {path}")
|
| 104 |
-
|
| 105 |
-
available_files = []
|
| 106 |
-
for root, dirs, files in os.walk(path):
|
| 107 |
-
for file in files:
|
| 108 |
-
if file.endswith(('.csv', '.xlsx')):
|
| 109 |
-
file_path = os.path.join(root, file)
|
| 110 |
-
file_size = os.path.getsize(file_path) / (1024 * 1024) # Size in MB
|
| 111 |
-
available_files.append({
|
| 112 |
-
'name': file,
|
| 113 |
-
'path': file_path,
|
| 114 |
-
'size_mb': round(file_size, 2)
|
| 115 |
-
})
|
| 116 |
-
|
| 117 |
-
return {
|
| 118 |
-
'base_path': path,
|
| 119 |
-
'files': available_files
|
| 120 |
-
}
|
| 121 |
-
except Exception as e:
|
| 122 |
-
logging.error(f"Error loading Soybean dataset: {e}")
|
| 123 |
-
return None
|
| 124 |
-
|
| 125 |
-
# Function to load Crop Recommendation Dataset
|
| 126 |
-
@st.cache_resource
|
| 127 |
-
def load_crop_recommendation_dataset():
|
| 128 |
-
|
| 129 |
-
try:
|
| 130 |
-
path = kagglehub.dataset_download("agriinnovate/agricultural-crop-dataset")
|
| 131 |
-
logging.info(f"Crop recommendation dataset downloaded to: {path}")
|
| 132 |
-
|
| 133 |
-
available_files = []
|
| 134 |
-
for root, dirs, files in os.walk(path):
|
| 135 |
-
for file in files:
|
| 136 |
-
if file.endswith(('.csv', '.xlsx')):
|
| 137 |
-
file_path = os.path.join(root, file)
|
| 138 |
-
file_size = os.path.getsize(file_path) / (1024 * 1024) # Size in MB
|
| 139 |
-
available_files.append({
|
| 140 |
-
'name': file,
|
| 141 |
-
'path': file_path,
|
| 142 |
-
'size_mb': round(file_size, 2)
|
| 143 |
-
})
|
| 144 |
-
|
| 145 |
-
return {
|
| 146 |
-
'base_path': path,
|
| 147 |
-
'files': available_files
|
| 148 |
-
}
|
| 149 |
-
except Exception as e:
|
| 150 |
-
logging.error(f"Error loading Crop recommendation dataset: {e}")
|
| 151 |
-
return None
|
| 152 |
-
|
| 153 |
-
# Function to load Climate Change Impact Dataset
|
| 154 |
-
@st.cache_resource
|
| 155 |
-
def load_climate_impact_dataset():
|
| 156 |
|
|
|
|
| 157 |
try:
|
| 158 |
-
|
| 159 |
-
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
if file.endswith(('.csv', '.xlsx')):
|
| 165 |
-
file_path = os.path.join(root, file)
|
| 166 |
-
file_size = os.path.getsize(file_path) / (1024 * 1024) # Size in MB
|
| 167 |
-
available_files.append({
|
| 168 |
-
'name': file,
|
| 169 |
-
'path': file_path,
|
| 170 |
-
'size_mb': round(file_size, 2)
|
| 171 |
-
})
|
| 172 |
|
| 173 |
-
|
| 174 |
-
'base_path': path,
|
| 175 |
-
'files': available_files
|
| 176 |
-
}
|
| 177 |
-
except Exception as e:
|
| 178 |
-
logging.error(f"Error loading Climate impact dataset: {e}")
|
| 179 |
-
return None
|
| 180 |
-
|
| 181 |
-
def get_dataset_summary():
|
| 182 |
-
|
| 183 |
-
dataset_info = load_agriculture_dataset()
|
| 184 |
-
if not dataset_info:
|
| 185 |
-
return "Failed to load the UN global food and agriculture statistics dataset."
|
| 186 |
-
|
| 187 |
-
summary = "# UN κΈλ‘λ² μλ λ° λμ
ν΅κ³ λ°μ΄ν°μ
\n\n"
|
| 188 |
-
summary += f"μ΄ {len(dataset_info['files'])}κ°μ CSV νμΌμ΄ ν¬ν¨λμ΄ μμ΅λλ€.\n\n"
|
| 189 |
-
|
| 190 |
-
# List files with sizes
|
| 191 |
-
summary += "## μ¬μ© κ°λ₯ν λ°μ΄ν° νμΌ:\n\n"
|
| 192 |
-
for i, file_info in enumerate(dataset_info['files'][:10], 1): # Limit to first 10 files
|
| 193 |
-
summary += f"{i}. **{file_info['name']}** ({file_info['size_mb']} MB)\n"
|
| 194 |
-
|
| 195 |
-
if len(dataset_info['files']) > 10:
|
| 196 |
-
summary += f"\n...μΈ {len(dataset_info['files']) - 10}κ° νμΌ\n"
|
| 197 |
-
|
| 198 |
-
# Add example of data structure
|
| 199 |
-
try:
|
| 200 |
-
if dataset_info['files']:
|
| 201 |
-
sample_file = dataset_info['files'][0]['path']
|
| 202 |
-
df = pd.read_csv(sample_file, nrows=5)
|
| 203 |
-
summary += "\n## λ°μ΄ν° μν ꡬ쑰:\n\n"
|
| 204 |
-
summary += df.head(5).to_markdown() + "\n\n"
|
| 205 |
-
|
| 206 |
-
summary += "## λ°μ΄ν°μ
λ³μ μ€λͺ
:\n\n"
|
| 207 |
-
for col in df.columns:
|
| 208 |
-
summary += f"- **{col}**: [λ³μ μ€λͺ
νμ]\n"
|
| 209 |
-
except Exception as e:
|
| 210 |
-
logging.error(f"Error generating dataset sample: {e}")
|
| 211 |
-
summary += "\nλ°μ΄ν° μνμ μμ±νλ μ€ μ€λ₯κ° λ°μνμ΅λλ€.\n"
|
| 212 |
-
|
| 213 |
-
return summary
|
| 214 |
-
|
| 215 |
-
def analyze_dataset_for_query(query):
|
| 216 |
-
|
| 217 |
-
dataset_info = load_agriculture_dataset()
|
| 218 |
-
if not dataset_info:
|
| 219 |
-
return "λ°μ΄ν°μ
μ λΆλ¬μ¬ μ μμ΅λλ€. Kaggle API μ°κ²°μ νμΈν΄μ£ΌμΈμ."
|
| 220 |
-
|
| 221 |
-
# Extract key terms from the query
|
| 222 |
-
query_lower = query.lower()
|
| 223 |
-
|
| 224 |
-
# Define keywords to look for in the dataset files
|
| 225 |
-
keywords = {
|
| 226 |
-
"μ": ["rice", "grain"],
|
| 227 |
-
"λ°": ["wheat", "grain"],
|
| 228 |
-
"μ₯μμ": ["corn", "maize", "grain"],
|
| 229 |
-
"μ±μ": ["vegetable", "produce"],
|
| 230 |
-
"κ³ΌμΌ": ["fruit", "produce"],
|
| 231 |
-
"κ°κ²©": ["price", "cost", "value"],
|
| 232 |
-
"μμ°": ["production", "yield", "harvest"],
|
| 233 |
-
"μμΆ": ["export", "trade"],
|
| 234 |
-
"μμ
": ["import", "trade"],
|
| 235 |
-
"μλΉ": ["consumption", "demand"]
|
| 236 |
-
}
|
| 237 |
-
|
| 238 |
-
# Find relevant files based on the query
|
| 239 |
-
relevant_files = []
|
| 240 |
-
|
| 241 |
-
# First check for Korean keywords in the query
|
| 242 |
-
found_keywords = []
|
| 243 |
-
for k_term, e_terms in keywords.items():
|
| 244 |
-
if k_term in query_lower:
|
| 245 |
-
found_keywords.extend([k_term] + e_terms)
|
| 246 |
-
|
| 247 |
-
# If no Korean keywords found, check for English terms in the filenames
|
| 248 |
-
if not found_keywords:
|
| 249 |
-
# Generic search through all files
|
| 250 |
-
relevant_files = dataset_info['files'][:5] # Take first 5 files as default
|
| 251 |
-
else:
|
| 252 |
-
# Search for files related to the found keywords
|
| 253 |
-
for file_info in dataset_info['files']:
|
| 254 |
-
file_name_lower = file_info['name'].lower()
|
| 255 |
-
for keyword in found_keywords:
|
| 256 |
-
if keyword.lower() in file_name_lower:
|
| 257 |
-
relevant_files.append(file_info)
|
| 258 |
-
break
|
| 259 |
-
|
| 260 |
-
# If still no relevant files, take the first 5 files
|
| 261 |
-
if not relevant_files:
|
| 262 |
-
relevant_files = dataset_info['files'][:5]
|
| 263 |
-
|
| 264 |
-
# Read and analyze the relevant files
|
| 265 |
-
analysis_result = "# λμ
λ°μ΄ν° λΆμ κ²°κ³Ό\n\n"
|
| 266 |
-
analysis_result += f"쿼리: '{query}'μ λν λΆμμ μννμ΅λλ€.\n\n"
|
| 267 |
-
|
| 268 |
-
if found_keywords:
|
| 269 |
-
analysis_result += f"## λΆμ ν€μλ: {', '.join(set(found_keywords))}\n\n"
|
| 270 |
-
|
| 271 |
-
# Process each relevant file
|
| 272 |
-
for file_info in relevant_files[:3]: # Limit to 3 files for performance
|
| 273 |
try:
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
# Basic file stats
|
| 280 |
-
analysis_result += f"- ν μ: {len(df)}\n"
|
| 281 |
-
analysis_result += f"- μ΄ μ: {len(df.columns)}\n"
|
| 282 |
-
analysis_result += f"- μ΄ λͺ©λ‘: {', '.join(df.columns.tolist())}\n\n"
|
| 283 |
|
| 284 |
-
#
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
numeric_cols = df.select_dtypes(include=['number']).columns
|
| 290 |
-
if len(numeric_cols) > 0:
|
| 291 |
-
analysis_result += "### κΈ°λ³Έ ν΅κ³:\n\n"
|
| 292 |
-
stats_df = df[numeric_cols].describe()
|
| 293 |
-
analysis_result += stats_df.to_markdown() + "\n\n"
|
| 294 |
-
|
| 295 |
-
# Time series analysis if possible
|
| 296 |
-
time_cols = [col for col in df.columns if 'year' in col.lower() or 'date' in col.lower()]
|
| 297 |
-
if time_cols:
|
| 298 |
-
analysis_result += "### μκ³μ΄ ν¨ν΄:\n\n"
|
| 299 |
-
analysis_result += "λ°μ΄ν°μ
μ μκ° κ΄λ ¨ μ΄μ΄ μμ΄ μκ³μ΄ λΆμμ΄ κ°λ₯ν©λλ€.\n\n"
|
| 300 |
-
|
| 301 |
-
except Exception as e:
|
| 302 |
-
logging.error(f"Error analyzing file {file_info['name']}: {e}")
|
| 303 |
-
analysis_result += f"μ΄ νμΌ λΆμ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}\n\n"
|
| 304 |
-
|
| 305 |
-
analysis_result += "## λμ°λ¬Ό κ°κ²© μμΈ‘ λ° μμ λΆμμ λν μΈμ¬μ΄νΈ\n\n"
|
| 306 |
-
analysis_result += "λ°μ΄ν°μ
μμ μΆμΆν μ 보λ₯Ό λ°νμΌλ‘ λ€μ μΈμ¬μ΄νΈλ₯Ό μ 곡ν©λλ€:\n\n"
|
| 307 |
-
analysis_result += "1. λ°μ΄ν° κΈ°λ° λΆμ (κΈ°λ³Έμ μΈ μμ½)\n"
|
| 308 |
-
analysis_result += "2. μ£Όμ κ°κ²© λ° μμ λν₯\n"
|
| 309 |
-
analysis_result += "3. μμ°λ λ° λ¬΄μ ν¨ν΄\n\n"
|
| 310 |
-
|
| 311 |
-
analysis_result += "μ΄ λΆμμ UN κΈλ‘λ² μλ λ° λμ
ν΅κ³ λ°μ΄ν°μ
μ κΈ°λ°μΌλ‘ ν©λλ€.\n\n"
|
| 312 |
-
|
| 313 |
-
return analysis_result
|
| 314 |
-
|
| 315 |
-
# Function to analyze crop recommendation dataset
|
| 316 |
-
def analyze_crop_recommendation_dataset(query):
|
| 317 |
-
|
| 318 |
-
try:
|
| 319 |
-
dataset_info = load_crop_recommendation_dataset()
|
| 320 |
-
if not dataset_info or not dataset_info['files']:
|
| 321 |
-
return "μλ¬Ό μΆμ² λ°μ΄ν°μ
μ λΆλ¬μ¬ μ μμ΅λλ€."
|
| 322 |
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
-
#
|
| 326 |
-
|
| 327 |
-
try:
|
| 328 |
-
analysis_result += f"## νμΌ: {file_info['name']}\n\n"
|
| 329 |
-
|
| 330 |
-
if file_info['name'].endswith('.csv'):
|
| 331 |
-
df = pd.read_csv(file_info['path'])
|
| 332 |
-
elif file_info['name'].endswith('.xlsx'):
|
| 333 |
-
df = pd.read_excel(file_info['path'])
|
| 334 |
-
else:
|
| 335 |
-
continue
|
| 336 |
-
|
| 337 |
-
# Basic dataset info
|
| 338 |
-
analysis_result += f"- λ°μ΄ν° ν¬κΈ°: {len(df)} ν Γ {len(df.columns)} μ΄\n"
|
| 339 |
-
analysis_result += f"- ν¬ν¨λ μλ¬Ό μ’
λ₯: "
|
| 340 |
-
|
| 341 |
-
# Check if crop column exists
|
| 342 |
-
crop_cols = [col for col in df.columns if 'crop' in col.lower() or 'μλ¬Ό' in col.lower()]
|
| 343 |
-
if crop_cols:
|
| 344 |
-
main_crop_col = crop_cols[0]
|
| 345 |
-
unique_crops = df[main_crop_col].unique()
|
| 346 |
-
analysis_result += f"{len(unique_crops)}μ’
({', '.join(str(c) for c in unique_crops[:10])})\n\n"
|
| 347 |
-
else:
|
| 348 |
-
analysis_result += "μλ¬Ό μ 보 μ΄μ μ°Ύμ μ μμ\n\n"
|
| 349 |
-
|
| 350 |
-
# Extract environmental factors
|
| 351 |
-
env_factors = [col for col in df.columns if col.lower() not in ['crop', 'label', 'id', 'index']]
|
| 352 |
-
if env_factors:
|
| 353 |
-
analysis_result += f"- κ³ λ €λ νκ²½ μμ: {', '.join(env_factors)}\n\n"
|
| 354 |
-
|
| 355 |
-
# Sample data
|
| 356 |
-
analysis_result += "### λ°μ΄ν° μν:\n\n"
|
| 357 |
-
analysis_result += df.head(5).to_markdown() + "\n\n"
|
| 358 |
-
|
| 359 |
-
# Summary statistics for environmental factors
|
| 360 |
-
if env_factors:
|
| 361 |
-
numeric_factors = df[env_factors].select_dtypes(include=['number']).columns
|
| 362 |
-
if len(numeric_factors) > 0:
|
| 363 |
-
analysis_result += "### νκ²½ μμ ν΅κ³:\n\n"
|
| 364 |
-
stats_df = df[numeric_factors].describe().round(2)
|
| 365 |
-
analysis_result += stats_df.to_markdown() + "\n\n"
|
| 366 |
-
|
| 367 |
-
# Check for query-specific crops
|
| 368 |
-
query_terms = query.lower().split()
|
| 369 |
-
relevant_crops = []
|
| 370 |
-
|
| 371 |
-
if crop_cols:
|
| 372 |
-
for crop in df[main_crop_col].unique():
|
| 373 |
-
crop_str = str(crop).lower()
|
| 374 |
-
if any(term in crop_str for term in query_terms):
|
| 375 |
-
relevant_crops.append(crop)
|
| 376 |
-
|
| 377 |
-
if relevant_crops:
|
| 378 |
-
analysis_result += f"### 쿼리 κ΄λ ¨ μλ¬Ό λΆμ: {', '.join(str(c) for c in relevant_crops)}\n\n"
|
| 379 |
-
for crop in relevant_crops[:3]: # Limit to 3 crops
|
| 380 |
-
crop_data = df[df[main_crop_col] == crop]
|
| 381 |
-
analysis_result += f"#### {crop} μλ¬Ό μμ½:\n\n"
|
| 382 |
-
analysis_result += f"- μν μ: {len(crop_data)}κ°\n"
|
| 383 |
-
|
| 384 |
-
if len(numeric_factors) > 0:
|
| 385 |
-
crop_stats = crop_data[numeric_factors].describe().round(2)
|
| 386 |
-
analysis_result += f"- νκ· νκ²½ 쑰건:\n"
|
| 387 |
-
for factor in numeric_factors[:5]: # Limit to 5 factors
|
| 388 |
-
analysis_result += f" * {factor}: {crop_stats.loc['mean', factor]}\n"
|
| 389 |
-
analysis_result += "\n"
|
| 390 |
-
|
| 391 |
-
except Exception as e:
|
| 392 |
-
logging.error(f"Error analyzing crop recommendation file {file_info['name']}: {e}")
|
| 393 |
-
analysis_result += f"λΆμ μ€λ₯: {str(e)}\n\n"
|
| 394 |
|
| 395 |
-
|
| 396 |
-
analysis_result += "ν μ λ° νκ²½ λ³μ λ°μ΄ν°μ
λΆμ κ²°κ³Ό, λ€μκ³Ό κ°μ μ£Όμ μΈμ¬μ΄νΈλ₯Ό μ 곡ν©λλ€:\n\n"
|
| 397 |
-
analysis_result += "1. μ§μ νκ²½μ μ ν©ν μλ¬Ό μΆμ²\n"
|
| 398 |
-
analysis_result += "2. μλ¬Ό μμ°μ±μ μν₯μ λ―ΈμΉλ μ£Όμ νκ²½ μμΈ\n"
|
| 399 |
-
analysis_result += "3. μ§μ κ°λ₯ν λμ
μ μν μ΅μ μ μλ¬Ό μ ν κΈ°μ€\n\n"
|
| 400 |
-
|
| 401 |
-
return analysis_result
|
| 402 |
-
|
| 403 |
-
except Exception as e:
|
| 404 |
-
logging.error(f"Crop recommendation dataset analysis error: {e}")
|
| 405 |
-
return "μλ¬Ό μΆμ² λ°μ΄ν°μ
λΆμ μ€ μ€λ₯κ° λ°μνμ΅λλ€."
|
| 406 |
-
|
| 407 |
-
# Function to analyze climate impact dataset
|
| 408 |
-
def analyze_climate_impact_dataset(query):
|
| 409 |
-
|
| 410 |
-
try:
|
| 411 |
-
dataset_info = load_climate_impact_dataset()
|
| 412 |
-
if not dataset_info or not dataset_info['files']:
|
| 413 |
-
return "κΈ°ν λ³ν μν₯ λ°μ΄ν°μ
μ λΆλ¬μ¬ μ μμ΅λλ€."
|
| 414 |
-
|
| 415 |
-
analysis_result = "# κΈ°ν λ³νκ° λμ
μ λ―ΈμΉλ μν₯ λ°μ΄ν° λΆμ\n\n"
|
| 416 |
-
|
| 417 |
-
# Process main files
|
| 418 |
-
for file_info in dataset_info['files'][:2]: # Limit to first 2 files
|
| 419 |
-
try:
|
| 420 |
-
analysis_result += f"## νμΌ: {file_info['name']}\n\n"
|
| 421 |
-
|
| 422 |
-
if file_info['name'].endswith('.csv'):
|
| 423 |
-
df = pd.read_csv(file_info['path'])
|
| 424 |
-
elif file_info['name'].endswith('.xlsx'):
|
| 425 |
-
df = pd.read_excel(file_info['path'])
|
| 426 |
-
else:
|
| 427 |
-
continue
|
| 428 |
-
|
| 429 |
-
# Basic dataset info
|
| 430 |
-
analysis_result += f"- λ°μ΄ν° ν¬κΈ°: {len(df)} ν Γ {len(df.columns)} μ΄\n"
|
| 431 |
-
|
| 432 |
-
# Check for region column
|
| 433 |
-
region_cols = [col for col in df.columns if 'region' in col.lower() or 'country' in col.lower() or 'μ§μ' in col.lower()]
|
| 434 |
-
if region_cols:
|
| 435 |
-
main_region_col = region_cols[0]
|
| 436 |
-
regions = df[main_region_col].unique()
|
| 437 |
-
analysis_result += f"- ν¬ν¨λ μ§μ: {len(regions)}κ° ({', '.join(str(r) for r in regions[:5])})\n"
|
| 438 |
-
|
| 439 |
-
# Identify climate and crop related columns
|
| 440 |
-
climate_cols = [col for col in df.columns if any(term in col.lower() for term in
|
| 441 |
-
['temp', 'rainfall', 'precipitation', 'climate', 'weather', 'κΈ°μ¨', 'κ°μλ'])]
|
| 442 |
-
crop_cols = [col for col in df.columns if any(term in col.lower() for term in
|
| 443 |
-
['yield', 'production', 'crop', 'harvest', 'μνλ', 'μμ°λ'])]
|
| 444 |
-
|
| 445 |
-
if climate_cols:
|
| 446 |
-
analysis_result += f"- κΈ°ν κ΄λ ¨ λ³μ: {', '.join(climate_cols)}\n"
|
| 447 |
-
if crop_cols:
|
| 448 |
-
analysis_result += f"- μλ¬Ό κ΄λ ¨ λ³μ: {', '.join(crop_cols)}\n\n"
|
| 449 |
-
|
| 450 |
-
# Sample data
|
| 451 |
-
analysis_result += "### λ°μ΄ν° μν:\n\n"
|
| 452 |
-
analysis_result += df.head(5).to_markdown() + "\n\n"
|
| 453 |
-
|
| 454 |
-
# Time series pattern if available
|
| 455 |
-
year_cols = [col for col in df.columns if 'year' in col.lower() or 'date' in col.lower() or 'μ°λ' in col.lower()]
|
| 456 |
-
if year_cols:
|
| 457 |
-
analysis_result += "### μκ³μ΄ κΈ°ν μν₯ ν¨ν΄:\n\n"
|
| 458 |
-
analysis_result += "μ΄ λ°μ΄ν°μ
μ μκ°μ λ°λ₯Έ κΈ°ν λ³νμ λμ
μμ°μ± κ°μ κ΄κ³λ₯Ό λΆμν μ μμ΅λλ€.\n\n"
|
| 459 |
-
|
| 460 |
-
# Statistical summary of key variables
|
| 461 |
-
key_vars = climate_cols + crop_cols
|
| 462 |
-
numeric_vars = df[key_vars].select_dtypes(include=['number']).columns
|
| 463 |
-
if len(numeric_vars) > 0:
|
| 464 |
-
analysis_result += "### μ£Όμ λ³μ ν΅κ³:\n\n"
|
| 465 |
-
stats_df = df[numeric_vars].describe().round(2)
|
| 466 |
-
analysis_result += stats_df.to_markdown() + "\n\n"
|
| 467 |
-
|
| 468 |
-
# Check for correlations between climate and crop variables
|
| 469 |
-
if len(climate_cols) > 0 and len(crop_cols) > 0:
|
| 470 |
-
numeric_climate = df[climate_cols].select_dtypes(include=['number']).columns
|
| 471 |
-
numeric_crop = df[crop_cols].select_dtypes(include=['number']).columns
|
| 472 |
-
|
| 473 |
-
if len(numeric_climate) > 0 and len(numeric_crop) > 0:
|
| 474 |
-
analysis_result += "### κΈ°νμ μλ¬Ό μμ° κ°μ μκ΄κ΄κ³:\n\n"
|
| 475 |
-
try:
|
| 476 |
-
corr_vars = list(numeric_climate)[:2] + list(numeric_crop)[:2] # Limit to 2 of each type
|
| 477 |
-
corr_df = df[corr_vars].corr().round(3)
|
| 478 |
-
analysis_result += corr_df.to_markdown() + "\n\n"
|
| 479 |
-
analysis_result += "μ μκ΄κ΄κ³ νλ κΈ°ν λ³μμ μλ¬Ό μμ°μ± κ°μ κ΄κ³ κ°λλ₯Ό 보μ¬μ€λλ€.\n\n"
|
| 480 |
-
except:
|
| 481 |
-
analysis_result += "μκ΄κ΄κ³ κ³μ° μ€ μ€λ₯κ° λ°μνμ΅λλ€.\n\n"
|
| 482 |
-
|
| 483 |
-
except Exception as e:
|
| 484 |
-
logging.error(f"Error analyzing climate impact file {file_info['name']}: {e}")
|
| 485 |
-
analysis_result += f"λΆμ μ€λ₯: {str(e)}\n\n"
|
| 486 |
-
|
| 487 |
-
analysis_result += "## κΈ°ν λ³ν μν₯ μΈμ¬μ΄νΈ\n\n"
|
| 488 |
-
analysis_result += "κΈ°ν λ³νκ° λμ
μ λ―ΈμΉλ μν₯ λ°μ΄ν° λΆμ κ²°κ³Ό, λ€μκ³Ό κ°μ μΈμ¬μ΄νΈλ₯Ό μ 곡ν©λλ€:\n\n"
|
| 489 |
-
analysis_result += "1. κΈ°μ¨ λ³νμ λ°λ₯Έ μλ¬Ό μμ°μ± λ³λ ν¨ν΄\n"
|
| 490 |
-
analysis_result += "2. κ°μλ λ³νκ° λμ
μνλμ λ―ΈμΉλ μν₯\n"
|
| 491 |
-
analysis_result += "3. κΈ°ν λ³νμ λμνκΈ° μν λμ
μ λ΅ μ μ\n"
|
| 492 |
-
analysis_result += "4. μ§μλ³ κΈ°ν μ·¨μ½μ± λ° μ μ λ°©μ\n\n"
|
| 493 |
-
|
| 494 |
-
return analysis_result
|
| 495 |
-
|
| 496 |
-
except Exception as e:
|
| 497 |
-
logging.error(f"Climate impact dataset analysis error: {e}")
|
| 498 |
-
return "κΈ°ν λ³ν μν₯ λ°μ΄ν°μ
λΆμ μ€ μ€λ₯κ° λ°μνμ΅λλ€."
|
| 499 |
-
|
| 500 |
-
# Function to analyze soybean dataset if selected
|
| 501 |
-
def analyze_soybean_dataset(query):
|
| 502 |
-
|
| 503 |
-
try:
|
| 504 |
-
dataset_info = load_soybean_dataset()
|
| 505 |
-
if not dataset_info or not dataset_info['files']:
|
| 506 |
-
return "λλ λμ
λ°μ΄ν°μ
μ λΆλ¬μ¬ μ μμ΅λλ€."
|
| 507 |
-
|
| 508 |
-
analysis_result = "# κ³ κΈ λλ λμ
λ°μ΄ν° λΆμ\n\n"
|
| 509 |
-
|
| 510 |
-
# Process main files
|
| 511 |
-
for file_info in dataset_info['files'][:2]: # Limit to the first 2 files
|
| 512 |
-
try:
|
| 513 |
-
analysis_result += f"## νμΌ: {file_info['name']}\n\n"
|
| 514 |
-
|
| 515 |
-
if file_info['name'].endswith('.csv'):
|
| 516 |
-
df = pd.read_csv(file_info['path'])
|
| 517 |
-
elif file_info['name'].endswith('.xlsx'):
|
| 518 |
-
df = pd.read_excel(file_info['path'])
|
| 519 |
-
else:
|
| 520 |
-
continue
|
| 521 |
-
|
| 522 |
-
# Basic file stats
|
| 523 |
-
analysis_result += f"- λ°μ΄ν° ν¬κΈ°: {len(df)} ν Γ {len(df.columns)} μ΄\n"
|
| 524 |
-
|
| 525 |
-
# Check for region/location columns
|
| 526 |
-
location_cols = [col for col in df.columns if any(term in col.lower() for term in
|
| 527 |
-
['region', 'location', 'area', 'country', 'μ§μ'])]
|
| 528 |
-
if location_cols:
|
| 529 |
-
main_loc_col = location_cols[0]
|
| 530 |
-
locations = df[main_loc_col].unique()
|
| 531 |
-
analysis_result += f"- ν¬ν¨λ μ§μ: {len(locations)}κ° ({', '.join(str(loc) for loc in locations[:5])})\n"
|
| 532 |
-
|
| 533 |
-
# Identify yield and production columns
|
| 534 |
-
yield_cols = [col for col in df.columns if any(term in col.lower() for term in
|
| 535 |
-
['yield', 'production', 'harvest', 'μνλ', 'μμ°λ'])]
|
| 536 |
-
if yield_cols:
|
| 537 |
-
analysis_result += f"- μμ°μ± κ΄λ ¨ λ³μ: {', '.join(yield_cols)}\n"
|
| 538 |
-
|
| 539 |
-
# Identify environmental factors
|
| 540 |
-
env_cols = [col for col in df.columns if any(term in col.lower() for term in
|
| 541 |
-
['temp', 'rainfall', 'soil', 'fertilizer', 'nutrient', 'irrigation',
|
| 542 |
-
'κΈ°μ¨', 'κ°μλ', 'ν μ', 'λΉλ£', 'κ΄κ°'])]
|
| 543 |
-
if env_cols:
|
| 544 |
-
analysis_result += f"- νκ²½ κ΄λ ¨ λ³μ: {', '.join(env_cols)}\n\n"
|
| 545 |
-
|
| 546 |
-
# Sample data
|
| 547 |
-
analysis_result += "### λ°μ΄ν° μν:\n\n"
|
| 548 |
-
analysis_result += df.head(5).to_markdown() + "\n\n"
|
| 549 |
-
|
| 550 |
-
# Statistical summary of key variables
|
| 551 |
-
key_vars = yield_cols + env_cols
|
| 552 |
-
numeric_vars = df[key_vars].select_dtypes(include=['number']).columns
|
| 553 |
-
if len(numeric_vars) > 0:
|
| 554 |
-
analysis_result += "### μ£Όμ λ³μ ν΅κ³:\n\n"
|
| 555 |
-
stats_df = df[numeric_vars].describe().round(2)
|
| 556 |
-
analysis_result += stats_df.to_markdown() + "\n\n"
|
| 557 |
-
|
| 558 |
-
# Time series analysis if possible
|
| 559 |
-
year_cols = [col for col in df.columns if 'year' in col.lower() or 'date' in col.lower() or 'μ°λ' in col.lower()]
|
| 560 |
-
if year_cols:
|
| 561 |
-
analysis_result += "### μκ³μ΄ μμ°μ± ν¨ν΄:\n\n"
|
| 562 |
-
analysis_result += "μ΄ λ°μ΄ν°μ
μ μκ°μ λ°λ₯Έ λλ μμ°μ±μ λ³νλ₯Ό μΆμ ν μ μμ΅λλ€.\n\n"
|
| 563 |
-
|
| 564 |
-
# Check for correlations between environmental factors and yield
|
| 565 |
-
if len(env_cols) > 0 and len(yield_cols) > 0:
|
| 566 |
-
numeric_env = df[env_cols].select_dtypes(include=['number']).columns
|
| 567 |
-
numeric_yield = df[yield_cols].select_dtypes(include=['number']).columns
|
| 568 |
-
|
| 569 |
-
if len(numeric_env) > 0 and len(numeric_yield) > 0:
|
| 570 |
-
analysis_result += "### νκ²½ μμμ λλ μμ°μ± κ°μ μκ΄κ΄κ³:\n\n"
|
| 571 |
-
try:
|
| 572 |
-
corr_vars = list(numeric_env)[:3] + list(numeric_yield)[:2] # Limit variables
|
| 573 |
-
corr_df = df[corr_vars].corr().round(3)
|
| 574 |
-
analysis_result += corr_df.to_markdown() + "\n\n"
|
| 575 |
-
except:
|
| 576 |
-
analysis_result += "μκ΄κ΄κ³ κ³μ° μ€ μ€λ₯κ° λ°μνμ΅λλ€.\n\n"
|
| 577 |
-
|
| 578 |
-
except Exception as e:
|
| 579 |
-
logging.error(f"Error analyzing soybean file {file_info['name']}: {e}")
|
| 580 |
-
analysis_result += f"λΆμ μ€λ₯: {str(e)}\n\n"
|
| 581 |
-
|
| 582 |
-
analysis_result += "## λλ λμ
μΈμ¬μ΄νΈ\n\n"
|
| 583 |
-
analysis_result += "κ³ κΈ λλ λμ
λ°μ΄ν°μ
λΆμ κ²°κ³Ό, λ€μκ³Ό κ°μ μΈμ¬μ΄νΈλ₯Ό μ 곡ν©λλ€:\n\n"
|
| 584 |
-
analysis_result += "1. μ΅μ μ λλ μμ°μ μν νκ²½ 쑰건\n"
|
| 585 |
-
analysis_result += "2. μ§μλ³ λλ μμ°μ± λ³ν ν¨ν΄\n"
|
| 586 |
-
analysis_result += "3. μμ°μ± ν₯μμ μν λμ
κΈ°μ λ° μ κ·Όλ²\n"
|
| 587 |
-
analysis_result += "4. μμ₯ μμμ λ§λ λλ νμ’
μ ν κ°μ΄λ\n\n"
|
| 588 |
-
|
| 589 |
-
return analysis_result
|
| 590 |
-
|
| 591 |
-
except Exception as e:
|
| 592 |
-
logging.error(f"Soybean dataset analysis error: {e}")
|
| 593 |
-
return "λλ λμ
λ°μ΄ν°μ
λΆμ μ€ μ€λ₯κ° λ°μνμ΅λλ€."
|
| 594 |
-
|
| 595 |
-
# ββββββββββοΏ½οΏ½βββββββββββββββββββββ System Prompt βββββββββββββββββββββββββ
|
| 596 |
-
def get_system_prompt(mode="price_forecast", style="professional", include_search_results=True, include_uploaded_files=False) -> str:
|
| 597 |
-
|
| 598 |
-
base_prompt = """
|
| 599 |
-
λΉμ μ λμ
λ°μ΄ν° μ λ¬Έκ°λ‘μ λμ°λ¬Ό κ°κ²© μμΈ‘κ³Ό μμ λΆμμ μννλ AI μ΄μμ€ν΄νΈμ
λλ€.
|
| 600 |
-
|
| 601 |
-
μ£Όμ μ무:
|
| 602 |
-
1. UN κΈλ‘λ² μλ λ° λμ
ν΅κ³ λ°μ΄ν°μ
μ κΈ°λ°μΌλ‘ λμ°λ¬Ό μμ₯ λΆμ
|
| 603 |
-
2. λμ°λ¬Ό κ°κ²© μΆμΈ μμΈ‘ λ° μμ ν¨ν΄ λΆμ
|
| 604 |
-
3. λ°μ΄ν°λ₯Ό λ°νμΌλ‘ λͺ
ννκ³ κ·Όκ±° μλ λΆμ μ 곡
|
| 605 |
-
4. κ΄λ ¨ μ 보μ μΈμ¬μ΄νΈλ₯Ό 체κ³μ μΌλ‘ ꡬμ±νμ¬ μ μ
|
| 606 |
-
5. μκ°μ μ΄ν΄λ₯Ό λκΈ° μν΄ μ°¨νΈ, κ·Έλν λ±μ μ μ ν νμ©
|
| 607 |
-
6. ν μ λ° νκ²½ λ³μ κΈ°λ° μλ¬Ό μΆμ² λ°μ΄ν°μ
μμ μΆμΆν μΈμ¬μ΄νΈ μ μ©
|
| 608 |
-
7. κΈ°ν λ³νκ° λμ
μ λ―ΈμΉλ μν₯ λ°μ΄ν°μ
μ ν΅ν νκ²½ λ³ν μλλ¦¬μ€ λΆμ
|
| 609 |
-
|
| 610 |
-
μ€μ κ°μ΄λλΌμΈ:
|
| 611 |
-
- λ°μ΄ν°μ κΈ°λ°ν κ°κ΄μ λΆμμ μ 곡νμΈμ
|
| 612 |
-
- λΆμ κ³Όμ κ³Ό λ°©λ²λ‘ μ λͺ
νν μ€λͺ
νμΈμ
|
| 613 |
-
- ν΅κ³μ μ λ’°μ±κ³Ό νκ³μ μ ν¬λͺ
νκ² μ μνμΈμ
|
| 614 |
-
- μ΄ν΄νκΈ° μ¬μ΄ μκ°μ μμλ‘ λΆμ κ²°κ³Όλ₯Ό 보μνμΈμ
|
| 615 |
-
- λ§ν¬λ€μ΄μ νμ©ν΄ μλ΅μ 체κ³μ μΌλ‘ ꡬμ±νμΈμ"""
|
| 616 |
-
|
| 617 |
-
mode_prompts = {
|
| 618 |
-
"price_forecast": """
|
| 619 |
-
λμ°λ¬Ό κ°κ²© μμΈ‘ λ° μμ₯ λΆμμ μ§μ€ν©λλ€:
|
| 620 |
-
- κ³Όκ±° κ°κ²© λ°μ΄ν° ν¨ν΄μ κΈ°λ°ν μμΈ‘ μ 곡
|
| 621 |
-
- κ°κ²© λ³λμ± μμΈ λΆμ(κ³μ μ±, λ μ¨, μ μ±
λ±)
|
| 622 |
-
- λ¨κΈ° λ° μ€μ₯κΈ° κ°κ²© μ λ§ μ μ
|
| 623 |
-
- κ°κ²©μ μν₯μ λ―ΈμΉλ κ΅λ΄μΈ μμΈ μλ³
|
| 624 |
-
- μμ₯ λΆνμ€μ±κ³Ό 리μ€ν¬ μμ κ°μ‘°""",
|
| 625 |
-
|
| 626 |
-
"market_trend": """
|
| 627 |
-
μμ₯ λν₯ λ° μμ ν¨ν΄ λΆμμ μ§μ€ν©λλ€:
|
| 628 |
-
- μ£Όμ λμ°λ¬Ό μμ λ³ν ν¨ν΄ μλ³
|
| 629 |
-
- μλΉμ μ νΈλ λ° κ΅¬λ§€ νλ λΆμ
|
| 630 |
-
- μμ₯ μΈκ·Έλ¨ΌνΈ λ° νμμμ₯ κΈ°ν νμ
|
| 631 |
-
- μμ₯ νλ/μΆμ νΈλ λ νκ°
|
| 632 |
-
- μμ νλ ₯μ± λ° κ°κ²© λ―Όκ°λ λΆμ""",
|
| 633 |
-
|
| 634 |
-
"production_analysis": """
|
| 635 |
-
μμ°λ λΆμ λ° μλ μ보 μ λ§μ μ§μ€ν©λλ€:
|
| 636 |
-
- μλ¬Ό μμ°λ μΆμΈ λ° λ³λ μμΈ λΆμ
|
| 637 |
-
- μλ μμ°κ³Ό μΈκ΅¬ μ±μ₯ κ°μ κ΄κ³ νκ°
|
| 638 |
-
- κ΅κ°/μ§μλ³ μμ° μλ λΉκ΅
|
| 639 |
-
- μλ μ보 μν μμ λ° μ·¨μ½μ μλ³
|
| 640 |
-
- μμ°μ± ν₯μ μ λ΅ λ° κΈ°ν μ μ""",
|
| 641 |
-
|
| 642 |
-
"agricultural_policy": """
|
| 643 |
-
λμ
μ μ±
λ° κ·μ μν₯ λΆμμ μ§μ€ν©λλ€:
|
| 644 |
-
- μ λΆ μ μ±
κ³Ό, 보쑰κΈ, κ·μ μ μμ₯ μν₯ λΆμ
|
| 645 |
-
- κ΅μ 무μ μ μ±
κ³Ό κ΄μΈμ λμ°λ¬Ό κ°κ²© μν₯ νκ°
|
| 646 |
-
- λμ
μ§μ νλ‘κ·Έλ¨μ ν¨κ³Όμ± κ²ν
|
| 647 |
-
- κ·μ νκ²½ λ³νμ λ°λ₯Έ μμ₯ μ‘°μ μμΈ‘
|
| 648 |
-
- μ μ±
μ κ°μ
μ μλλ/μλμΉ μμ κ²°κ³Ό λΆμ""",
|
| 649 |
-
|
| 650 |
-
"climate_impact": """
|
| 651 |
-
κΈ°ν λ³νκ° λμ
μ λ―ΈμΉλ μν₯ λΆμμ μ§μ€ν©λλ€:
|
| 652 |
-
- κΈ°ν λ³νμ λμ°λ¬Ό μμ°λ/νμ§ κ°μ μκ΄κ΄κ³ λΆμ
|
| 653 |
-
- κΈ°μ μ΄λ³μ΄ κ°κ²© λ³λμ±μ λ―ΈμΉλ μν₯ νκ°
|
| 654 |
-
- μ₯κΈ°μ κΈ°ν μΆμΈμ λ°λ₯Έ λμ
ν¨ν΄ λ³ν μμΈ‘
|
| 655 |
-
- κΈ°ν ν볡λ ₯ μλ λμ
μμ€ν
μ λ΅ μ μ
|
| 656 |
-
- μ§μλ³ κΈ°ν μν λ
ΈμΆλ λ° μ·¨μ½μ± λ§€ν"""
|
| 657 |
-
|
| 658 |
-
}
|
| 659 |
-
|
| 660 |
-
style_guides = {
|
| 661 |
-
"professional": "μ λ¬Έμ μ΄κ³ νμ μ μΈ μ΄μ‘°λ₯Ό μ¬μ©νμΈμ. κΈ°μ μ μ©μ΄λ₯Ό μ μ ν μ¬μ©νκ³ μ²΄κ³μ μΈ λ°μ΄ν° λΆμμ μ 곡νμΈμ.",
|
| 662 |
-
"simple": "μ½κ³ κ°κ²°ν μΈμ΄λ‘ μ€λͺ
νμΈμ. μ λ¬Έ μ©μ΄λ μ΅μννκ³ ν΅μ¬ κ°λ
μ μΌμμ μΈ ννμΌλ‘ μ λ¬νμΈμ.",
|
| 663 |
-
"detailed": "μμΈνκ³ ν¬κ΄μ μΈ λΆμμ μ 곡νμΈμ. λ€μν λ°μ΄ν° ν¬μΈνΈ, ν΅κ³μ λμμ€, κ·Έλ¦¬κ³ μ¬λ¬ μλ리μ€λ₯Ό κ³ λ €ν μ¬μΈ΅ λΆμμ μ μνμΈμ.",
|
| 664 |
-
"action_oriented": "μ€ν κ°λ₯ν μΈμ¬μ΄νΈμ ꡬ체μ μΈ κΆμ₯μ¬νμ μ΄μ μ λ§μΆμΈμ. 'λ€μ λ¨κ³' λ° 'μ€μ§μ μ‘°μΈ' μΉμ
μ ν¬ν¨νμΈμ."
|
| 665 |
-
}
|
| 666 |
-
|
| 667 |
-
dataset_guide = """
|
| 668 |
-
λμ
λ°μ΄ν°μ
νμ© μ§μΉ¨:
|
| 669 |
-
- UN κΈλ‘λ² μλ λ° λμ
ν΅κ³ λ°μ΄ν°μ
μ κΈ°λ³Έ λΆμμ κ·Όκ±°λ‘ μ¬μ©νμΈμ
|
| 670 |
-
- ν μ λ° νκ²½ λ³μ κΈ°λ° μλ¬Ό μΆμ² λ°μ΄ν°μ
μ μΈμ¬μ΄νΈλ₯Ό μλ¬Ό μ ν λ° μ¬λ°° 쑰건 λΆμμ ν΅ν©νμΈμ
|
| 671 |
-
- κΈ°ν λ³νκ° λμ
μ λ―ΈμΉλ μν₯ λ°μ΄ν°μ
μ μ 보λ₯Ό μ§μ κ°λ₯μ± λ° λ―Έλ μ λ§ λΆμμ νμ©νμΈμ
|
| 672 |
-
- λ°μ΄ν°μ μΆμ²μ μ°λλ₯Ό λͺ
νν μΈμ©νμΈμ
|
| 673 |
-
- λ°μ΄ν°μ
λ΄ μ£Όμ λ³μ κ°μ κ΄κ³λ₯Ό λΆμνμ¬ μΈμ¬μ΄νΈλ₯Ό λμΆνμΈμ
|
| 674 |
-
- λ°μ΄ν°μ νκ³μ λΆνμ€μ±μ ν¬λͺ
νκ² μΈκΈνμΈμ
|
| 675 |
-
- νμμ λ°μ΄ν° 격차λ₯Ό μλ³νκ³ μΆκ° μ°κ΅¬κ° νμν μμμ μ μνμΈμ"""
|
| 676 |
-
|
| 677 |
-
soybean_guide = """
|
| 678 |
-
κ³ κΈ λλ λμ
λ°μ΄ν°μ
νμ© μ§μΉ¨:
|
| 679 |
-
- λλ μμ° μ‘°κ±΄ λ° μνλ ν¨ν΄μ λ€λ₯Έ μλ¬Όκ³Ό λΉκ΅νμ¬ λΆμνμΈμ
|
| 680 |
-
- λλ λμ
μ κ²½μ μ κ°μΉμ μμ₯ κΈ°νμ λν μΈμ¬μ΄νΈλ₯Ό μ 곡νμΈμ
|
| 681 |
-
- λλ μμ°μ±μ μν₯μ λ―ΈμΉλ μ£Όμ νκ²½ μμΈμ κ°μ‘°νμΈμ
|
| 682 |
-
- λλ μ¬λ°° κΈ°μ νμ κ³Ό μμ΅μ± ν₯μ λ°©μμ μ μνμΈμ
|
| 683 |
-
- μ§μ κ°λ₯ν λλ λμ
μ μν μ€μ§μ μΈ μ κ·Όλ²μ 곡μ νμΈμ"""
|
| 684 |
-
|
| 685 |
-
crop_recommendation_guide = """
|
| 686 |
-
ν μ λ° νκ²½ λ³μ κΈ°λ° μλ¬Ό μΆμ² νμ© μ§μΉ¨:
|
| 687 |
-
- μ§μ νΉμ±μ λ§λ μ΅μ μ μλ¬Ό μ ν κΈ°μ€μ μ μνμΈμ
|
| 688 |
-
- ν μ 쑰건과 μλ¬Ό μ ν©μ± κ°μ μκ΄κ΄κ³λ₯Ό λΆμνμΈμ
|
| 689 |
-
- νκ²½ λ³μμ λ°λ₯Έ μλ¬Ό μμ°μ± μμΈ‘ λͺ¨λΈμ νμ©νμΈμ
|
| 690 |
-
- λμ
μμ°μ±κ³Ό μμ΅μ± ν₯μμ μν μλ¬Ό μ ν μ λ΅μ μ μνμΈμ
|
| 691 |
-
- μ§μ κ°λ₯ν λμ
μ μν μλ¬Ό λ€μν μ κ·Όλ²μ κΆμ₯νμΈμ"""
|
| 692 |
-
|
| 693 |
-
climate_impact_guide = """
|
| 694 |
-
κΈ°ν λ³νκ° λμ
μ λ―ΈμΉλ μν₯ λ°μ΄ν°μ
νμ© μ§μΉ¨:
|
| 695 |
-
- κΈ°ν λ³ν μλ리μ€μ λ°λ₯Έ μλ¬Ό μμ°μ± λ³νλ₯Ό μμΈ‘νμΈμ
|
| 696 |
-
- κΈ°ν μ μν λμ
κΈ°μ λ° μ λ΅μ μ μνμΈμ
|
| 697 |
-
- μ§μλ³ κΈ°ν μν μμμ λμ λ°©μμ λΆμνμΈμ
|
| 698 |
-
- κΈ°ν λ³νμ λμνκΈ° μν μλ¬Ό μ ν λ° μ¬λ°° μκΈ° μ‘°μ λ°©μμ μ μνμΈμ
|
| 699 |
-
- κΈ°ν λ³νκ° λμ°λ¬Ό κ°κ²© λ° μμ₯ λν₯μ λ―ΈμΉλ μν₯μ νκ°νμΈμ"""
|
| 700 |
-
|
| 701 |
-
search_guide = """
|
| 702 |
-
μΉ κ²μ κ²°κ³Ό νμ© μ§μΉ¨:
|
| 703 |
-
- λ°μ΄ν°μ
λΆμμ 보μνλ μ΅μ μμ₯ μ λ³΄λ‘ κ²μ κ²°κ³Όλ₯Ό νμ©νμΈμ
|
| 704 |
-
- κ° μ 보μ μΆμ²λ₯Ό λ§ν¬λ€μ΄ λ§ν¬λ‘ ν¬ν¨νμΈμ: [μΆμ²λͺ
](URL)
|
| 705 |
-
- μ£Όμ μ£Όμ₯μ΄λ λ°μ΄ν° ν¬μΈνΈλ§λ€ μΆμ²λ₯Ό νμνμΈμ
|
| 706 |
-
- μΆμ²κ° μμΆ©ν κ²½μ°, λ€μν κ΄μ κ³Ό μ λ’°λλ₯Ό μ€λͺ
νμΈμ
|
| 707 |
-
- κ΄λ ¨ λμμ λ§ν¬λ [λΉλμ€: μ λͺ©](video_url) νμμΌλ‘ ν¬ν¨νμΈμ
|
| 708 |
-
- κ²μ μ 보λ₯Ό μΌκ΄λκ³ μ²΄κ³μ μΈ μλ΅μΌλ‘ ν΅ν©νμΈμ
|
| 709 |
-
- λͺ¨λ μ£Όμ μΆμ²λ₯Ό λμ΄ν "μ°Έκ³ μλ£" μΉμ
μ λ§μ§λ§μ ν¬ν¨νμΈμ"""
|
| 710 |
-
|
| 711 |
-
upload_guide = """
|
| 712 |
-
μ
λ‘λλ νμΌ νμ© μ§μΉ¨:
|
| 713 |
-
- μ
λ‘λλ νμΌμ μλ΅μ μ£Όμ μ 보μμΌλ‘ νμ©νμΈμ
|
| 714 |
-
- 쿼리μ μ§μ κ΄λ ¨λ νμΌ μ 보λ₯Ό μΆμΆνκ³ κ°μ‘°νμΈμ
|
| 715 |
-
- κ΄λ ¨ ꡬμ μ μΈμ©νκ³ νΉμ νμΌμ μΆμ²λ‘ μΈμ©νμΈμ
|
| 716 |
-
- CSV νμΌμ μμΉ λ°μ΄ν°λ μμ½ λ¬Έμ₯μΌλ‘ λ³ννμΈμ
|
| 717 |
-
- PDF μ½ν
μΈ λ νΉμ μΉμ
μ΄λ νμ΄μ§λ₯Ό μ°Έμ‘°νμΈμ
|
| 718 |
-
- νμΌ μ 보λ₯Ό μΉ κ²μ κ²°κ³Όμ μννκ² ν΅ν©νμΈμ
|
| 719 |
-
- μ λ³΄κ° μμΆ©ν κ²½μ°, μΌλ°μ μΈ μΉ κ²°κ³Όλ³΄λ€ νμΌ μ½ν
μΈ λ₯Ό μ°μ μνμΈμ"""
|
| 720 |
-
|
| 721 |
-
# Base prompt
|
| 722 |
-
final_prompt = base_prompt
|
| 723 |
-
|
| 724 |
-
# Add mode-specific guidance
|
| 725 |
-
if mode in mode_prompts:
|
| 726 |
-
final_prompt += "\n" + mode_prompts[mode]
|
| 727 |
-
|
| 728 |
-
# Style
|
| 729 |
-
if style in style_guides:
|
| 730 |
-
final_prompt += f"\n\nλΆμ μ€νμΌ: {style_guides[style]}"
|
| 731 |
-
|
| 732 |
-
# Always include dataset guides
|
| 733 |
-
final_prompt += f"\n\n{dataset_guide}"
|
| 734 |
-
final_prompt += f"\n\n{crop_recommendation_guide}"
|
| 735 |
-
final_prompt += f"\n\n{climate_impact_guide}"
|
| 736 |
-
|
| 737 |
-
# Conditionally add soybean dataset guide if selected in UI
|
| 738 |
-
if st.session_state.get('use_soybean_dataset', False):
|
| 739 |
-
final_prompt += f"\n\n{soybean_guide}"
|
| 740 |
-
|
| 741 |
-
if include_search_results:
|
| 742 |
-
final_prompt += f"\n\n{search_guide}"
|
| 743 |
-
|
| 744 |
-
if include_uploaded_files:
|
| 745 |
-
final_prompt += f"\n\n{upload_guide}"
|
| 746 |
-
|
| 747 |
-
final_prompt += """
|
| 748 |
-
\n\nμλ΅ νμ μꡬμ¬ν:
|
| 749 |
-
- λ§ν¬λ€μ΄ μ λͺ©(## λ° ###)μ μ¬μ©νμ¬ μλ΅μ 체κ³μ μΌλ‘ ꡬμ±νμΈμ
|
| 750 |
-
- μ€μν μ μ κ΅΅μ ν
μ€νΈ(**ν
μ€νΈ**)λ‘ κ°μ‘°νμΈμ
|
| 751 |
-
- 3-5κ°μ νμ μ§λ¬Έμ ν¬ν¨ν "κ΄λ ¨ μ§λ¬Έ" μΉμ
μ λ§μ§λ§μ μΆκ°νμΈμ
|
| 752 |
-
- μ μ ν κ°κ²©κ³Ό λ¨λ½ ꡬλΆμΌλ‘ μλ΅μ μμννμΈμ
|
| 753 |
-
- λͺ¨λ λ§ν¬λ λ§ν¬λ€μ΄ νμμΌλ‘ ν΄λ¦ κ°λ₯νκ² λ§λμΈμ: [ν
μ€νΈ](url)
|
| 754 |
-
- κ°λ₯ν κ²½μ° λ°μ΄ν°λ₯Ό μκ°μ μΌλ‘ νν(ν, κ·Έλν λ±μ μ€λͺ
)νμΈμ"""
|
| 755 |
-
|
| 756 |
-
return final_prompt
|
| 757 |
-
|
| 758 |
-
# ββββββββββββββββββββββββββββββββ Brave Search API ββββββββββββββββββββββββ
|
| 759 |
-
@st.cache_data(ttl=3600)
|
| 760 |
-
def brave_search(query: str, count: int = 10):
|
| 761 |
-
if not BRAVE_KEY:
|
| 762 |
-
raise RuntimeError("β οΈ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
|
| 763 |
-
|
| 764 |
-
headers = {"Accept": "application/json", "Accept-Encoding": "gzip", "X-Subscription-Token": BRAVE_KEY}
|
| 765 |
-
params = {"q": query + " λμ°λ¬Ό κ°κ²© λν₯ λμ
λ°μ΄ν°", "count": str(count)}
|
| 766 |
-
|
| 767 |
-
for attempt in range(3):
|
| 768 |
try:
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
raw = data.get("web", {}).get("results") or data.get("results", [])
|
| 774 |
-
if not raw:
|
| 775 |
-
logging.warning(f"No Brave search results found. Response: {data}")
|
| 776 |
-
raise ValueError("No search results found.")
|
| 777 |
|
| 778 |
-
arts = []
|
| 779 |
-
for i, res in enumerate(raw[:count], 1):
|
| 780 |
-
url = res.get("url", res.get("link", ""))
|
| 781 |
-
host = re.sub(r"https?://(www\.)?", "", url).split("/")[0]
|
| 782 |
-
arts.append({
|
| 783 |
-
"index": i,
|
| 784 |
-
"title": res.get("title", "No title"),
|
| 785 |
-
"link": url,
|
| 786 |
-
"snippet": res.get("description", res.get("text", "No snippet")),
|
| 787 |
-
"displayed_link": host
|
| 788 |
-
})
|
| 789 |
-
|
| 790 |
-
return arts
|
| 791 |
-
|
| 792 |
-
except Exception as e:
|
| 793 |
-
logging.error(f"Brave search failure (attempt {attempt+1}/3): {e}")
|
| 794 |
-
if attempt < 2:
|
| 795 |
-
time.sleep(5)
|
| 796 |
-
|
| 797 |
-
return []
|
| 798 |
-
|
| 799 |
-
@st.cache_data(ttl=3600)
|
| 800 |
-
def brave_video_search(query: str, count: int = 3):
|
| 801 |
-
if not BRAVE_KEY:
|
| 802 |
-
raise RuntimeError("β οΈ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
|
| 803 |
-
|
| 804 |
-
headers = {"Accept": "application/json","Accept-Encoding": "gzip","X-Subscription-Token": BRAVE_KEY}
|
| 805 |
-
params = {"q": query + " λμ°λ¬Ό κ°κ²© λμ
μμ₯", "count": str(count)}
|
| 806 |
-
|
| 807 |
-
for attempt in range(3):
|
| 808 |
-
try:
|
| 809 |
-
r = requests.get(BRAVE_VIDEO_ENDPOINT, headers=headers, params=params, timeout=15)
|
| 810 |
-
r.raise_for_status()
|
| 811 |
-
data = r.json()
|
| 812 |
-
|
| 813 |
-
results = []
|
| 814 |
-
for i, vid in enumerate(data.get("results", [])[:count], 1):
|
| 815 |
-
results.append({
|
| 816 |
-
"index": i,
|
| 817 |
-
"title": vid.get("title", "Video"),
|
| 818 |
-
"video_url": vid.get("url", ""),
|
| 819 |
-
"thumbnail_url": vid.get("thumbnail", {}).get("src", ""),
|
| 820 |
-
"source": vid.get("provider", {}).get("name", "Unknown source")
|
| 821 |
-
})
|
| 822 |
-
|
| 823 |
-
return results
|
| 824 |
-
|
| 825 |
-
except Exception as e:
|
| 826 |
-
logging.error(f"Brave video search failure (attempt {attempt+1}/3): {e}")
|
| 827 |
-
if attempt < 2:
|
| 828 |
-
time.sleep(5)
|
| 829 |
-
|
| 830 |
-
return []
|
| 831 |
-
|
| 832 |
-
@st.cache_data(ttl=3600)
|
| 833 |
-
def brave_news_search(query: str, count: int = 3):
|
| 834 |
-
if not BRAVE_KEY:
|
| 835 |
-
raise RuntimeError("β οΈ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
|
| 836 |
-
|
| 837 |
-
headers = {"Accept": "application/json","Accept-Encoding": "gzip","X-Subscription-Token": BRAVE_KEY}
|
| 838 |
-
params = {"q": query + " λμ°λ¬Ό κ°κ²© λν₯ λμ
", "count": str(count)}
|
| 839 |
-
|
| 840 |
-
for attempt in range(3):
|
| 841 |
-
try:
|
| 842 |
-
r = requests.get(BRAVE_NEWS_ENDPOINT, headers=headers, params=params, timeout=15)
|
| 843 |
-
r.raise_for_status()
|
| 844 |
-
data = r.json()
|
| 845 |
-
|
| 846 |
-
results = []
|
| 847 |
-
for i, news in enumerate(data.get("results", [])[:count], 1):
|
| 848 |
-
results.append({
|
| 849 |
-
"index": i,
|
| 850 |
-
"title": news.get("title", "News article"),
|
| 851 |
-
"url": news.get("url", ""),
|
| 852 |
-
"description": news.get("description", ""),
|
| 853 |
-
"source": news.get("source", "Unknown source"),
|
| 854 |
-
"date": news.get("age", "Unknown date")
|
| 855 |
-
})
|
| 856 |
-
|
| 857 |
-
return results
|
| 858 |
-
|
| 859 |
-
except Exception as e:
|
| 860 |
-
logging.error(f"Brave news search failure (attempt {attempt+1}/3): {e}")
|
| 861 |
-
if attempt < 2:
|
| 862 |
-
time.sleep(5)
|
| 863 |
-
|
| 864 |
-
return []
|
| 865 |
-
|
| 866 |
-
def mock_results(query: str) -> str:
|
| 867 |
-
ts = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 868 |
-
return (f"# λ체 κ²μ μ½ν
μΈ (μμ± μκ°: {ts})\n\n"
|
| 869 |
-
f"'{query}'μ λν κ²μ API μμ²μ΄ μ€ν¨νκ±°λ κ²°κ³Όκ° μμ΅λλ€. "
|
| 870 |
-
f"κΈ°μ‘΄ μ§μμ κΈ°λ°μΌλ‘ μλ΅μ μμ±ν΄μ£ΌμΈμ.\n\n"
|
| 871 |
-
f"λ€μ μ¬νμ κ³ λ €νμΈμ:\n\n"
|
| 872 |
-
f"- {query}μ κ΄ν κΈ°λ³Έ κ°λ
κ³Ό μ€μμ±\n"
|
| 873 |
-
f"- μΌλ°μ μΌλ‘ μλ €μ§ κ΄λ ¨ ν΅κ³λ μΆμΈ\n"
|
| 874 |
-
f"- μ΄ μ£Όμ μ λν μ λ¬Έκ° μ견\n"
|
| 875 |
-
f"- λ
μκ° κ°μ§ μ μλ μ§λ¬Έ\n\n"
|
| 876 |
-
f"μ°Έκ³ : μ΄λ μ€μκ° λ°μ΄ν°κ° μλ λ체 μ§μΉ¨μ
λλ€.\n\n")
|
| 877 |
-
|
| 878 |
-
def do_web_search(query: str) -> str:
|
| 879 |
-
try:
|
| 880 |
-
arts = brave_search(query, 10)
|
| 881 |
-
if not arts:
|
| 882 |
-
logging.warning("No search results, using fallback content")
|
| 883 |
-
return mock_results(query)
|
| 884 |
-
|
| 885 |
-
videos = brave_video_search(query, 2)
|
| 886 |
-
news = brave_news_search(query, 3)
|
| 887 |
-
|
| 888 |
-
result = "# μΉ κ²μ κ²°κ³Ό\nλ€μ κ²°κ³Όλ₯Ό νμ©νμ¬ λ°μ΄ν°μ
λΆμμ 보μνλ ν¬κ΄μ μΈ λ΅λ³μ μ 곡νμΈμ.\n\n"
|
| 889 |
-
|
| 890 |
-
result += "## μΉ κ²°κ³Ό\n\n"
|
| 891 |
-
for a in arts[:5]:
|
| 892 |
-
result += f"### κ²°κ³Ό {a['index']}: {a['title']}\n\n{a['snippet']}\n\n"
|
| 893 |
-
result += f"**μΆμ²**: [{a['displayed_link']}]({a['link']})\n\n---\n"
|
| 894 |
-
|
| 895 |
-
if news:
|
| 896 |
-
result += "## λ΄μ€ κ²°κ³Ό\n\n"
|
| 897 |
-
for n in news:
|
| 898 |
-
result += f"### {n['title']}\n\n{n['description']}\n\n"
|
| 899 |
-
result += f"**μΆμ²**: [{n['source']}]({n['url']}) - {n['date']}\n\n---\n"
|
| 900 |
-
|
| 901 |
-
if videos:
|
| 902 |
-
result += "## λΉλμ€ κ²°κ³Ό\n\n"
|
| 903 |
-
for vid in videos:
|
| 904 |
-
result += f"### {vid['title']}\n\n"
|
| 905 |
-
if vid.get('thumbnail_url'):
|
| 906 |
-
result += f"\n\n"
|
| 907 |
-
result += f"**μμ²**: [{vid['source']}]({vid['video_url']})\n\n"
|
| 908 |
-
|
| 909 |
-
return result
|
| 910 |
-
|
| 911 |
except Exception as e:
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
# ββββββββββββββββββββββββββββββββ File Upload Handling βββββββββββββββββββββ
|
| 916 |
-
def process_text_file(file):
|
| 917 |
-
try:
|
| 918 |
-
content = file.read()
|
| 919 |
-
file.seek(0)
|
| 920 |
-
|
| 921 |
-
text = content.decode('utf-8', errors='ignore')
|
| 922 |
-
if len(text) > 10000:
|
| 923 |
-
text = text[:9700] + "...(truncated)..."
|
| 924 |
-
|
| 925 |
-
result = f"## ν
μ€νΈ νμΌ: {file.name}\n\n" + text
|
| 926 |
-
return result
|
| 927 |
-
except Exception as e:
|
| 928 |
-
logging.error(f"Error processing text file: {str(e)}")
|
| 929 |
-
return f"ν
μ€νΈ νμΌ μ²λ¦¬ μ€λ₯: {str(e)}"
|
| 930 |
-
|
| 931 |
-
def process_csv_file(file):
|
| 932 |
-
try:
|
| 933 |
-
content = file.read()
|
| 934 |
-
file.seek(0)
|
| 935 |
-
|
| 936 |
-
df = pd.read_csv(io.BytesIO(content))
|
| 937 |
-
result = f"## CSV νμΌ: {file.name}\n\n"
|
| 938 |
-
result += f"- ν: {len(df)}\n"
|
| 939 |
-
result += f"- μ΄: {len(df.columns)}\n"
|
| 940 |
-
result += f"- μ΄ μ΄λ¦: {', '.join(df.columns.tolist())}\n\n"
|
| 941 |
-
|
| 942 |
-
result += "### λ°μ΄ν° 미리보기\n\n"
|
| 943 |
-
preview_df = df.head(10)
|
| 944 |
-
try:
|
| 945 |
-
markdown_table = preview_df.to_markdown(index=False)
|
| 946 |
-
if markdown_table:
|
| 947 |
-
result += markdown_table + "\n\n"
|
| 948 |
-
else:
|
| 949 |
-
result += "CSV λ°μ΄ν°λ₯Ό νμν μ μμ΅λλ€.\n\n"
|
| 950 |
-
except Exception as e:
|
| 951 |
-
logging.error(f"Markdown table conversion error: {e}")
|
| 952 |
-
result += "ν
μ€νΈλ‘ λ°μ΄ν° νμ:\n\n" + str(preview_df) + "\n\n"
|
| 953 |
-
|
| 954 |
-
num_cols = df.select_dtypes(include=['number']).columns
|
| 955 |
-
if len(num_cols) > 0:
|
| 956 |
-
result += "### κΈ°λ³Έ ν΅κ³ μ 보\n\n"
|
| 957 |
-
try:
|
| 958 |
-
stats_df = df[num_cols].describe().round(2)
|
| 959 |
-
stats_markdown = stats_df.to_markdown()
|
| 960 |
-
if stats_markdown:
|
| 961 |
-
result += stats_markdown + "\n\n"
|
| 962 |
-
else:
|
| 963 |
-
result += "ν΅κ³ μ 보λ₯Ό νμν μ μμ΅λλ€.\n\n"
|
| 964 |
-
except Exception as e:
|
| 965 |
-
logging.error(f"Statistical info conversion error: {e}")
|
| 966 |
-
result += "ν΅κ³ μ 보λ₯Ό μμ±ν μ μμ΅λλ€.\n\n"
|
| 967 |
-
|
| 968 |
-
return result
|
| 969 |
-
except Exception as e:
|
| 970 |
-
logging.error(f"CSV file processing error: {str(e)}")
|
| 971 |
-
return f"CSV νμΌ μ²λ¦¬ μ€λ₯: {str(e)}"
|
| 972 |
-
|
| 973 |
-
def process_pdf_file(file):
|
| 974 |
-
try:
|
| 975 |
-
file_bytes = file.read()
|
| 976 |
-
file.seek(0)
|
| 977 |
-
|
| 978 |
-
pdf_file = io.BytesIO(file_bytes)
|
| 979 |
-
reader = PyPDF2.PdfReader(pdf_file, strict=False)
|
| 980 |
-
|
| 981 |
-
result = f"## PDF νμΌ: {file.name}\n\n- μ΄ νμ΄μ§: {len(reader.pages)}\n\n"
|
| 982 |
-
|
| 983 |
-
max_pages = min(5, len(reader.pages))
|
| 984 |
-
all_text = ""
|
| 985 |
-
|
| 986 |
-
for i in range(max_pages):
|
| 987 |
-
try:
|
| 988 |
-
page = reader.pages[i]
|
| 989 |
-
page_text = page.extract_text()
|
| 990 |
-
current_page_text = f"### νμ΄μ§ {i+1}\n\n"
|
| 991 |
-
if page_text and len(page_text.strip()) > 0:
|
| 992 |
-
if len(page_text) > 1500:
|
| 993 |
-
current_page_text += page_text[:1500] + "...(μΆμ½λ¨)...\n\n"
|
| 994 |
-
else:
|
| 995 |
-
current_page_text += page_text + "\n\n"
|
| 996 |
-
else:
|
| 997 |
-
current_page_text += "(ν
μ€νΈλ₯Ό μΆμΆν μ μμ)\n\n"
|
| 998 |
-
|
| 999 |
-
all_text += current_page_text
|
| 1000 |
-
|
| 1001 |
-
if len(all_text) > 8000:
|
| 1002 |
-
all_text += "...(λλ¨Έμ§ νμ΄μ§ μΆμ½λ¨)...\n\n"
|
| 1003 |
-
break
|
| 1004 |
-
|
| 1005 |
-
except Exception as page_err:
|
| 1006 |
-
logging.error(f"Error processing PDF page {i+1}: {str(page_err)}")
|
| 1007 |
-
all_text += f"### νμ΄μ§ {i+1}\n\n(λ΄μ© μΆμΆ μ€λ₯: {str(page_err)})\n\n"
|
| 1008 |
-
|
| 1009 |
-
if len(reader.pages) > max_pages:
|
| 1010 |
-
all_text += f"\nμ°Έκ³ : μ²μ {max_pages} νμ΄μ§λ§ νμλ©λλ€.\n\n"
|
| 1011 |
-
|
| 1012 |
-
result += "### PDF λ΄μ©\n\n" + all_text
|
| 1013 |
-
return result
|
| 1014 |
-
|
| 1015 |
-
except Exception as e:
|
| 1016 |
-
logging.error(f"PDF file processing error: {str(e)}")
|
| 1017 |
-
return f"## PDF νμΌ: {file.name}\n\nμ€λ₯: {str(e)}\n\nμ²λ¦¬ν μ μμ΅λλ€."
|
| 1018 |
-
|
| 1019 |
-
def process_uploaded_files(files):
|
| 1020 |
-
if not files:
|
| 1021 |
-
return None
|
| 1022 |
-
|
| 1023 |
-
result = "# μ
λ‘λλ νμΌ λ΄μ©\n\nμ¬μ©μκ° μ 곡ν νμΌμ λ΄μ©μ
λλ€.\n\n"
|
| 1024 |
-
for file in files:
|
| 1025 |
-
try:
|
| 1026 |
-
ext = file.name.split('.')[-1].lower()
|
| 1027 |
-
if ext == 'txt':
|
| 1028 |
-
result += process_text_file(file) + "\n\n---\n\n"
|
| 1029 |
-
elif ext == 'csv':
|
| 1030 |
-
result += process_csv_file(file) + "\n\n---\n\n"
|
| 1031 |
-
elif ext == 'pdf':
|
| 1032 |
-
result += process_pdf_file(file) + "\n\n---\n\n"
|
| 1033 |
-
else:
|
| 1034 |
-
result += f"### μ§μλμ§ μλ νμΌ: {file.name}\n\n---\n\n"
|
| 1035 |
-
except Exception as e:
|
| 1036 |
-
logging.error(f"File processing error {file.name}: {e}")
|
| 1037 |
-
result += f"### νμΌ μ²λ¦¬ μ€λ₯: {file.name}\n\nμ€λ₯: {e}\n\n---\n\n"
|
| 1038 |
-
|
| 1039 |
-
return result
|
| 1040 |
-
|
| 1041 |
-
# ββββββββββββββββββββββββββββββββ Image & Utility βββββββββββββββββββββββββ
|
| 1042 |
-
|
| 1043 |
-
def generate_image(prompt, w=768, h=768, g=3.5, steps=30, seed=3):
|
| 1044 |
-
if not prompt:
|
| 1045 |
-
return None, "Insufficient prompt"
|
| 1046 |
-
try:
|
| 1047 |
-
res = Client(IMAGE_API_URL).predict(
|
| 1048 |
-
prompt=prompt, width=w, height=h, guidance=g,
|
| 1049 |
-
inference_steps=steps, seed=seed,
|
| 1050 |
-
do_img2img=False, init_image=None,
|
| 1051 |
-
image2image_strength=0.8, resize_img=True,
|
| 1052 |
-
api_name="/generate_image"
|
| 1053 |
-
)
|
| 1054 |
-
return res[0], f"Seed: {res[1]}"
|
| 1055 |
-
except Exception as e:
|
| 1056 |
-
logging.error(e)
|
| 1057 |
-
return None, str(e)
|
| 1058 |
-
|
| 1059 |
-
def extract_image_prompt(response_text: str, topic: str):
|
| 1060 |
-
client = get_openai_client()
|
| 1061 |
-
try:
|
| 1062 |
-
response = client.chat.completions.create(
|
| 1063 |
-
model="gpt-4.1-mini",
|
| 1064 |
-
messages=[
|
| 1065 |
-
{"role": "system", "content": "λμ
λ° λμ°λ¬Όμ κ΄ν μ΄λ―Έμ§ ν둬ννΈλ₯Ό μμ±ν©λλ€. ν μ€μ μμ΄λ‘ λ ν둬ννΈλ§ λ°ννμΈμ, λ€λ₯Έ ν
μ€νΈλ ν¬ν¨νμ§ λ§μΈμ."},
|
| 1066 |
-
{"role": "user", "content": f"μ£Όμ : {topic}\n\n---\n{response_text}\n\n---"}
|
| 1067 |
-
],
|
| 1068 |
-
temperature=1,
|
| 1069 |
-
max_tokens=80,
|
| 1070 |
-
top_p=1
|
| 1071 |
-
)
|
| 1072 |
-
return response.choices[0].message.content.strip()
|
| 1073 |
-
except Exception as e:
|
| 1074 |
-
logging.error(f"OpenAI image prompt generation error: {e}")
|
| 1075 |
-
return f"A professional photograph of agricultural produce and farm fields, data visualization of crop prices and trends, high quality"
|
| 1076 |
-
|
| 1077 |
-
def md_to_html(md: str, title="λμ°λ¬Ό μμ μμΈ‘ λΆμ κ²°κ³Ό"):
|
| 1078 |
-
return f"<!DOCTYPE html><html><head><title>{title}</title><meta charset='utf-8'></head><body>{markdown.markdown(md)}</body></html>"
|
| 1079 |
-
|
| 1080 |
-
def keywords(text: str, top=5):
|
| 1081 |
-
cleaned = re.sub(r"[^κ°-ν£a-zA-Z0-9\s]", "", text)
|
| 1082 |
-
return " ".join(cleaned.split()[:top])
|
| 1083 |
-
|
| 1084 |
-
# ββββββββββββββββββββββββββββββββ Streamlit UI ββββββββββββββββββββββββββββ
|
| 1085 |
-
def agricultural_price_forecast_app():
|
| 1086 |
-
st.title("Agriculture GPT")
|
| 1087 |
-
st.markdown("UN κΈλ‘λ² μλ λ° λμ
ν΅κ³ λ°μ΄ν°μ
λΆμ κΈ°λ°μ λμ°λ¬Ό μμ₯ μμΈ‘")
|
| 1088 |
-
|
| 1089 |
-
if "ai_model" not in st.session_state:
|
| 1090 |
-
st.session_state.ai_model = "gpt-4.1-mini"
|
| 1091 |
-
if "messages" not in st.session_state:
|
| 1092 |
-
st.session_state.messages = []
|
| 1093 |
-
if "auto_save" not in st.session_state:
|
| 1094 |
-
st.session_state.auto_save = True
|
| 1095 |
-
if "generate_image" not in st.session_state:
|
| 1096 |
-
st.session_state.generate_image = False
|
| 1097 |
-
if "web_search_enabled" not in st.session_state:
|
| 1098 |
-
st.session_state.web_search_enabled = True
|
| 1099 |
-
if "analysis_mode" not in st.session_state:
|
| 1100 |
-
st.session_state.analysis_mode = "price_forecast"
|
| 1101 |
-
if "response_style" not in st.session_state:
|
| 1102 |
-
st.session_state.response_style = "professional"
|
| 1103 |
-
if "use_soybean_dataset" not in st.session_state:
|
| 1104 |
-
st.session_state.use_soybean_dataset = False
|
| 1105 |
-
|
| 1106 |
-
sb = st.sidebar
|
| 1107 |
-
sb.title("λΆμ μ€μ ")
|
| 1108 |
-
|
| 1109 |
-
# Kaggle dataset info display
|
| 1110 |
-
if sb.checkbox("λ°μ΄ν°μ
μ 보 νμ", value=False):
|
| 1111 |
-
st.info("UN κΈλ‘λ² μλ λ° λμ
ν΅κ³ λ°μ΄ν°μ
μ λΆλ¬μ€λ μ€...")
|
| 1112 |
-
dataset_info = load_agriculture_dataset()
|
| 1113 |
-
if dataset_info:
|
| 1114 |
-
st.success(f"λ°μ΄ν°μ
λ‘λ μλ£: {len(dataset_info['files'])}κ° νμΌ")
|
| 1115 |
-
|
| 1116 |
-
with st.expander("λ°μ΄ν°μ
미리보기", expanded=False):
|
| 1117 |
-
for file_info in dataset_info['files'][:5]:
|
| 1118 |
-
st.write(f"**{file_info['name']}** ({file_info['size_mb']} MB)")
|
| 1119 |
-
else:
|
| 1120 |
-
st.error("λ°μ΄ν°μ
μ λΆλ¬μ€λλ° μ€ν¨νμ΅λλ€. Kaggle API μ€μ μ νμΈνμΈμ.")
|
| 1121 |
-
|
| 1122 |
-
sb.subheader("λΆμ ꡬμ±")
|
| 1123 |
-
sb.selectbox(
|
| 1124 |
-
"λΆμ λͺ¨λ",
|
| 1125 |
-
options=list(ANALYSIS_MODES.keys()),
|
| 1126 |
-
format_func=lambda x: ANALYSIS_MODES[x],
|
| 1127 |
-
key="analysis_mode"
|
| 1128 |
-
)
|
| 1129 |
-
|
| 1130 |
-
sb.selectbox(
|
| 1131 |
-
"μλ΅ μ€νμΌ",
|
| 1132 |
-
options=list(RESPONSE_STYLES.keys()),
|
| 1133 |
-
format_func=lambda x: RESPONSE_STYLES[x],
|
| 1134 |
-
key="response_style"
|
| 1135 |
-
)
|
| 1136 |
-
|
| 1137 |
-
# Dataset selection
|
| 1138 |
-
sb.subheader("λ°μ΄ν°μ
μ ν")
|
| 1139 |
-
sb.checkbox(
|
| 1140 |
-
"κ³ κΈ λοΏ½οΏ½ λμ
λ°μ΄ν°μ
μ¬μ©",
|
| 1141 |
-
key="use_soybean_dataset",
|
| 1142 |
-
help="λλ(콩) κ΄λ ¨ μ§λ¬Έμ λ μ νν μ 보λ₯Ό μ 곡ν©λλ€."
|
| 1143 |
-
)
|
| 1144 |
-
|
| 1145 |
-
# Always enabled datasets info
|
| 1146 |
-
sb.info("κΈ°λ³Έ νμ±νλ λ°μ΄ν°μ
:\n- UN κΈλ‘λ² μλ λ° λμ
ν΅κ³\n- ν μ λ° νκ²½ λ³μ κΈ°λ° μλ¬Ό μΆμ²\n- κΈ°ν λ³νκ° λμ
μ λ―ΈμΉλ μν₯")
|
| 1147 |
-
|
| 1148 |
-
# Example queries
|
| 1149 |
-
sb.subheader("μμ μ§λ¬Έ")
|
| 1150 |
-
c1, c2, c3 = sb.columns(3)
|
| 1151 |
-
if c1.button("μ κ°κ²© μ λ§", key="ex1"):
|
| 1152 |
-
process_example(EXAMPLE_QUERIES["example1"])
|
| 1153 |
-
if c2.button("κΈ°ν μν₯", key="ex2"):
|
| 1154 |
-
process_example(EXAMPLE_QUERIES["example2"])
|
| 1155 |
-
if c3.button("μ¦νκ΅° μλ¬Ό", key="ex3"):
|
| 1156 |
-
process_example(EXAMPLE_QUERIES["example3"])
|
| 1157 |
-
|
| 1158 |
-
sb.subheader("κΈ°ν μ€μ ")
|
| 1159 |
-
sb.toggle("μλ μ μ₯", key="auto_save")
|
| 1160 |
-
sb.toggle("μ΄λ―Έμ§ μλ μμ±", key="generate_image")
|
| 1161 |
-
|
| 1162 |
-
web_search_enabled = sb.toggle("μΉ κ²μ μ¬μ©", value=st.session_state.web_search_enabled)
|
| 1163 |
-
st.session_state.web_search_enabled = web_search_enabled
|
| 1164 |
-
|
| 1165 |
-
if web_search_enabled:
|
| 1166 |
-
st.sidebar.info("β
μΉ κ²μ κ²°κ³Όκ° μλ΅μ ν΅ν©λ©λλ€.")
|
| 1167 |
-
|
| 1168 |
-
# Download the latest response
|
| 1169 |
-
latest_response = next(
|
| 1170 |
-
(m["content"] for m in reversed(st.session_state.messages)
|
| 1171 |
-
if m["role"] == "assistant" and m["content"].strip()),
|
| 1172 |
-
None
|
| 1173 |
-
)
|
| 1174 |
-
if latest_response:
|
| 1175 |
-
title_match = re.search(r"# (.*?)(\n|$)", latest_response)
|
| 1176 |
-
if title_match:
|
| 1177 |
-
title = title_match.group(1).strip()
|
| 1178 |
-
else:
|
| 1179 |
-
first_line = latest_response.split('\n', 1)[0].strip()
|
| 1180 |
-
title = first_line[:40] + "..." if len(first_line) > 40 else first_line
|
| 1181 |
-
|
| 1182 |
-
sb.subheader("μ΅μ μλ΅ λ€μ΄λ‘λ")
|
| 1183 |
-
d1, d2 = sb.columns(2)
|
| 1184 |
-
d1.download_button("λ§ν¬λ€μ΄μΌλ‘ λ€μ΄λ‘λ", latest_response,
|
| 1185 |
-
file_name=f"{title}.md", mime="text/markdown")
|
| 1186 |
-
d2.download_button("HTMLλ‘ λ€μ΄λ‘λ", md_to_html(latest_response, title),
|
| 1187 |
-
file_name=f"{title}.html", mime="text/html")
|
| 1188 |
-
|
| 1189 |
-
# JSON conversation record upload
|
| 1190 |
-
up = sb.file_uploader("λν κΈ°λ‘ λΆλ¬μ€κΈ° (.json)", type=["json"], key="json_uploader")
|
| 1191 |
-
if up:
|
| 1192 |
-
try:
|
| 1193 |
-
st.session_state.messages = json.load(up)
|
| 1194 |
-
sb.success("λν κΈ°λ‘μ μ±κ³΅μ μΌλ‘ λΆλ¬μμ΅λλ€")
|
| 1195 |
-
except Exception as e:
|
| 1196 |
-
sb.error(f"λΆλ¬μ€κΈ° μ€ν¨: {e}")
|
| 1197 |
-
|
| 1198 |
-
# JSON conversation record download
|
| 1199 |
-
if sb.button("λν κΈ°λ‘μ JSONμΌλ‘ λ€μ΄λ‘λ"):
|
| 1200 |
-
sb.download_button(
|
| 1201 |
-
"μ μ₯",
|
| 1202 |
-
data=json.dumps(st.session_state.messages, ensure_ascii=False, indent=2),
|
| 1203 |
-
file_name="conversation_history.json",
|
| 1204 |
-
mime="application/json"
|
| 1205 |
-
)
|
| 1206 |
-
|
| 1207 |
-
# File Upload
|
| 1208 |
-
st.subheader("νμΌ μ
λ‘λ")
|
| 1209 |
-
uploaded_files = st.file_uploader(
|
| 1210 |
-
"μ°Έκ³ μλ£λ‘ μ¬μ©ν νμΌ μ
λ‘λ (txt, csv, pdf)",
|
| 1211 |
-
type=["txt", "csv", "pdf"],
|
| 1212 |
-
accept_multiple_files=True,
|
| 1213 |
-
key="file_uploader"
|
| 1214 |
-
)
|
| 1215 |
-
|
| 1216 |
-
if uploaded_files:
|
| 1217 |
-
file_count = len(uploaded_files)
|
| 1218 |
-
st.success(f"{file_count}κ° νμΌμ΄ μ
λ‘λλμμ΅λλ€. μ§μμ λν μμ€λ‘ μ¬μ©λ©λλ€.")
|
| 1219 |
-
|
| 1220 |
-
with st.expander("μ
λ‘λλ νμΌ λ―Έλ¦¬λ³΄κΈ°", expanded=False):
|
| 1221 |
-
for idx, file in enumerate(uploaded_files):
|
| 1222 |
-
st.write(f"**νμΌλͺ
:** {file.name}")
|
| 1223 |
-
ext = file.name.split('.')[-1].lower()
|
| 1224 |
-
|
| 1225 |
-
if ext == 'txt':
|
| 1226 |
-
preview = file.read(1000).decode('utf-8', errors='ignore')
|
| 1227 |
-
file.seek(0)
|
| 1228 |
-
st.text_area(
|
| 1229 |
-
f"{file.name} 미리보기",
|
| 1230 |
-
preview + ("..." if len(preview) >= 1000 else ""),
|
| 1231 |
-
height=150
|
| 1232 |
-
)
|
| 1233 |
-
elif ext == 'csv':
|
| 1234 |
-
try:
|
| 1235 |
-
df = pd.read_csv(file)
|
| 1236 |
-
file.seek(0)
|
| 1237 |
-
st.write("CSV 미리보기 (μ΅λ 5ν)")
|
| 1238 |
-
st.dataframe(df.head(5))
|
| 1239 |
-
except Exception as e:
|
| 1240 |
-
st.error(f"CSV 미리보기 μ€ν¨: {e}")
|
| 1241 |
-
elif ext == 'pdf':
|
| 1242 |
-
try:
|
| 1243 |
-
file_bytes = file.read()
|
| 1244 |
-
file.seek(0)
|
| 1245 |
-
|
| 1246 |
-
pdf_file = io.BytesIO(file_bytes)
|
| 1247 |
-
reader = PyPDF2.PdfReader(pdf_file, strict=False)
|
| 1248 |
-
|
| 1249 |
-
pc = len(reader.pages)
|
| 1250 |
-
st.write(f"PDF νμΌ: {pc}νμ΄μ§")
|
| 1251 |
-
|
| 1252 |
-
if pc > 0:
|
| 1253 |
-
try:
|
| 1254 |
-
page_text = reader.pages[0].extract_text()
|
| 1255 |
-
preview = page_text[:500] if page_text else "(ν
μ€νΈ μΆμΆ λΆκ°)"
|
| 1256 |
-
st.text_area("첫 νμ΄μ§ 미리보기", preview + "...", height=150)
|
| 1257 |
-
except:
|
| 1258 |
-
st.warning("첫 νμ΄μ§ ν
μ€νΈ μΆμΆ μ€ν¨")
|
| 1259 |
-
except Exception as e:
|
| 1260 |
-
st.error(f"PDF 미리보기 μ€ν¨: {e}")
|
| 1261 |
-
|
| 1262 |
-
if idx < file_count - 1:
|
| 1263 |
-
st.divider()
|
| 1264 |
-
|
| 1265 |
-
# Display existing messages
|
| 1266 |
-
for m in st.session_state.messages:
|
| 1267 |
-
with st.chat_message(m["role"]):
|
| 1268 |
-
st.markdown(m["content"], unsafe_allow_html=True)
|
| 1269 |
-
|
| 1270 |
-
# Videos
|
| 1271 |
-
if "videos" in m and m["videos"]:
|
| 1272 |
-
st.subheader("κ΄λ ¨ λΉλμ€")
|
| 1273 |
-
for video in m["videos"]:
|
| 1274 |
-
video_title = video.get('title', 'κ΄λ ¨ λΉλμ€')
|
| 1275 |
-
video_url = video.get('url', '')
|
| 1276 |
-
thumbnail = video.get('thumbnail', '')
|
| 1277 |
-
|
| 1278 |
-
if thumbnail:
|
| 1279 |
-
col1, col2 = st.columns([1, 3])
|
| 1280 |
-
with col1:
|
| 1281 |
-
st.write("π¬")
|
| 1282 |
-
with col2:
|
| 1283 |
-
st.markdown(f"**[{video_title}]({video_url})**")
|
| 1284 |
-
st.write(f"μΆμ²: {video.get('source', 'μ μ μμ')}")
|
| 1285 |
-
else:
|
| 1286 |
-
st.markdown(f"π¬ **[{video_title}]({video_url})**")
|
| 1287 |
-
st.write(f"μΆμ²: {video.get('source', 'μ μ μμ')}")
|
| 1288 |
-
|
| 1289 |
-
# User input
|
| 1290 |
-
query = st.chat_input("λμ°λ¬Ό κ°κ²©, μμ λλ μμ₯ λν₯ κ΄λ ¨ μ§λ¬Έμ μ
λ ₯νμΈμ.")
|
| 1291 |
-
if query:
|
| 1292 |
-
process_input(query, uploaded_files)
|
| 1293 |
-
|
| 1294 |
-
sb.markdown("---")
|
| 1295 |
-
sb.markdown("Created by Vidraft | [Community](https://discord.gg/openfreeai)")
|
| 1296 |
-
|
| 1297 |
-
def process_example(topic):
|
| 1298 |
-
process_input(topic, [])
|
| 1299 |
-
|
| 1300 |
-
def process_input(query: str, uploaded_files):
|
| 1301 |
-
if not any(m["role"] == "user" and m["content"] == query for m in st.session_state.messages):
|
| 1302 |
-
st.session_state.messages.append({"role": "user", "content": query})
|
| 1303 |
-
|
| 1304 |
-
with st.chat_message("user"):
|
| 1305 |
-
st.markdown(query)
|
| 1306 |
-
|
| 1307 |
-
with st.chat_message("assistant"):
|
| 1308 |
-
placeholder = st.empty()
|
| 1309 |
-
message_placeholder = st.empty()
|
| 1310 |
-
full_response = ""
|
| 1311 |
-
|
| 1312 |
-
use_web_search = st.session_state.web_search_enabled
|
| 1313 |
-
has_uploaded_files = bool(uploaded_files) and len(uploaded_files) > 0
|
| 1314 |
-
|
| 1315 |
-
try:
|
| 1316 |
-
status = st.status("μ§λ¬Έμ λ΅λ³ μ€λΉ μ€...")
|
| 1317 |
-
status.update(label="ν΄λΌμ΄μΈνΈ μ΄κΈ°ν μ€...")
|
| 1318 |
-
|
| 1319 |
-
client = get_openai_client()
|
| 1320 |
-
|
| 1321 |
-
search_content = None
|
| 1322 |
-
video_results = []
|
| 1323 |
-
news_results = []
|
| 1324 |
-
|
| 1325 |
-
# λμ
λ°μ΄ν°μ
λΆμ κ²°κ³Ό κ°μ Έμ€κΈ°
|
| 1326 |
-
status.update(label="λμ
λ°μ΄ν°μ
λΆμ μ€...")
|
| 1327 |
-
with st.spinner("λ°μ΄ν°μ
λΆμ μ€..."):
|
| 1328 |
-
dataset_analysis = analyze_dataset_for_query(query)
|
| 1329 |
-
|
| 1330 |
-
# νμ ν¬ν¨λλ μΆκ° λ°μ΄ν°μ
λΆμ
|
| 1331 |
-
crop_recommendation_analysis = analyze_crop_recommendation_dataset(query)
|
| 1332 |
-
climate_impact_analysis = analyze_climate_impact_dataset(query)
|
| 1333 |
-
|
| 1334 |
-
# μ‘°κ±΄λΆ λ°μ΄ν°μ
λΆμ
|
| 1335 |
-
soybean_analysis = None
|
| 1336 |
-
if st.session_state.use_soybean_dataset:
|
| 1337 |
-
status.update(label="λλ λμ
λ°μ΄ν°μ
λΆμ μ€...")
|
| 1338 |
-
with st.spinner("λλ λ°μ΄ν°μ
λΆμ μ€..."):
|
| 1339 |
-
soybean_analysis = analyze_soybean_dataset(query)
|
| 1340 |
-
|
| 1341 |
-
|
| 1342 |
-
if use_web_search:
|
| 1343 |
-
# μΉ κ²μ κ³Όμ μ λ
ΈμΆνμ§ μκ³ μ‘°μ©ν μ§ν
|
| 1344 |
-
with st.spinner("μ 보 μμ§ μ€..."):
|
| 1345 |
-
search_content = do_web_search(keywords(query, top=5))
|
| 1346 |
-
video_results = brave_video_search(query, 2)
|
| 1347 |
-
news_results = brave_news_search(query, 3)
|
| 1348 |
-
|
| 1349 |
-
file_content = None
|
| 1350 |
-
if has_uploaded_files:
|
| 1351 |
-
status.update(label="μ
λ‘λλ νμΌ μ²λ¦¬ μ€...")
|
| 1352 |
-
with st.spinner("νμΌ λΆμ μ€..."):
|
| 1353 |
-
file_content = process_uploaded_files(uploaded_files)
|
| 1354 |
-
|
| 1355 |
-
valid_videos = []
|
| 1356 |
-
for vid in video_results:
|
| 1357 |
-
url = vid.get('video_url')
|
| 1358 |
-
if url and url.startswith('http'):
|
| 1359 |
-
valid_videos.append({
|
| 1360 |
-
'url': url,
|
| 1361 |
-
'title': vid.get('title', 'λΉλμ€'),
|
| 1362 |
-
'thumbnail': vid.get('thumbnail_url', ''),
|
| 1363 |
-
'source': vid.get('source', 'λΉλμ€ μΆμ²')
|
| 1364 |
-
})
|
| 1365 |
-
|
| 1366 |
-
status.update(label="μ’
ν© λΆμ μ€λΉ μ€...")
|
| 1367 |
-
sys_prompt = get_system_prompt(
|
| 1368 |
-
mode=st.session_state.analysis_mode,
|
| 1369 |
-
style=st.session_state.response_style,
|
| 1370 |
-
include_search_results=use_web_search,
|
| 1371 |
-
include_uploaded_files=has_uploaded_files
|
| 1372 |
-
)
|
| 1373 |
-
|
| 1374 |
-
api_messages = [
|
| 1375 |
-
{"role": "system", "content": sys_prompt}
|
| 1376 |
-
]
|
| 1377 |
-
|
| 1378 |
-
user_content = query
|
| 1379 |
-
# νμ κΈ°λ³Έ λ°μ΄ν°μ
λΆμ κ²°κ³Ό ν¬ν¨
|
| 1380 |
-
user_content += "\n\n" + dataset_analysis
|
| 1381 |
-
user_content += "\n\n" + crop_recommendation_analysis
|
| 1382 |
-
user_content += "\n\n" + climate_impact_analysis
|
| 1383 |
-
|
| 1384 |
-
# μ‘°κ±΄λΆ λ°μ΄ν°μ
κ²°κ³Ό ν¬ν¨
|
| 1385 |
-
if soybean_analysis:
|
| 1386 |
-
user_content += "\n\n" + soybean_analysis
|
| 1387 |
-
|
| 1388 |
-
if search_content:
|
| 1389 |
-
user_content += "\n\n" + search_content
|
| 1390 |
-
if file_content:
|
| 1391 |
-
user_content += "\n\n" + file_content
|
| 1392 |
-
|
| 1393 |
-
if valid_videos:
|
| 1394 |
-
user_content += "\n\n# κ΄λ ¨ λμμ\n"
|
| 1395 |
-
for i, vid in enumerate(valid_videos):
|
| 1396 |
-
user_content += f"\n{i+1}. **{vid['title']}** - [{vid['source']}]({vid['url']})\n"
|
| 1397 |
-
|
| 1398 |
-
api_messages.append({"role": "user", "content": user_content})
|
| 1399 |
-
|
| 1400 |
-
try:
|
| 1401 |
-
stream = client.chat.completions.create(
|
| 1402 |
-
model="gpt-4.1-mini",
|
| 1403 |
-
messages=api_messages,
|
| 1404 |
-
temperature=1,
|
| 1405 |
-
max_tokens=MAX_TOKENS,
|
| 1406 |
-
top_p=1,
|
| 1407 |
-
stream=True
|
| 1408 |
-
)
|
| 1409 |
-
|
| 1410 |
-
for chunk in stream:
|
| 1411 |
-
if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content is not None:
|
| 1412 |
-
content_delta = chunk.choices[0].delta.content
|
| 1413 |
-
full_response += content_delta
|
| 1414 |
-
message_placeholder.markdown(full_response + "β", unsafe_allow_html=True)
|
| 1415 |
-
|
| 1416 |
-
message_placeholder.markdown(full_response, unsafe_allow_html=True)
|
| 1417 |
-
|
| 1418 |
-
if valid_videos:
|
| 1419 |
-
st.subheader("κ΄λ ¨ λΉλμ€")
|
| 1420 |
-
for video in valid_videos:
|
| 1421 |
-
video_title = video.get('title', 'κ΄λ ¨ λΉλμ€')
|
| 1422 |
-
video_url = video.get('url', '')
|
| 1423 |
-
|
| 1424 |
-
st.markdown(f"π¬ **[{video_title}]({video_url})**")
|
| 1425 |
-
st.write(f"μΆμ²: {video.get('source', 'μ μ μμ')}")
|
| 1426 |
-
|
| 1427 |
-
status.update(label="μλ΅ μλ£!", state="complete")
|
| 1428 |
-
|
| 1429 |
-
st.session_state.messages.append({
|
| 1430 |
-
"role": "assistant",
|
| 1431 |
-
"content": full_response,
|
| 1432 |
-
"videos": valid_videos
|
| 1433 |
-
})
|
| 1434 |
-
|
| 1435 |
-
except Exception as api_error:
|
| 1436 |
-
error_message = str(api_error)
|
| 1437 |
-
logging.error(f"API μ€λ₯: {error_message}")
|
| 1438 |
-
status.update(label=f"μ€λ₯: {error_message}", state="error")
|
| 1439 |
-
raise Exception(f"μλ΅ μμ± μ€λ₯: {error_message}")
|
| 1440 |
-
|
| 1441 |
-
if st.session_state.generate_image and full_response:
|
| 1442 |
-
with st.spinner("λ§μΆ€ν μ΄λ―Έμ§ μμ± μ€..."):
|
| 1443 |
-
try:
|
| 1444 |
-
ip = extract_image_prompt(full_response, query)
|
| 1445 |
-
img, cap = generate_image(ip)
|
| 1446 |
-
if img:
|
| 1447 |
-
st.subheader("AI μμ± μ΄λ―Έμ§")
|
| 1448 |
-
st.image(img, caption=cap, use_container_width=True)
|
| 1449 |
-
except Exception as img_error:
|
| 1450 |
-
logging.error(f"μ΄λ―Έμ§ μμ± μ€λ₯: {str(img_error)}")
|
| 1451 |
-
st.warning("λ§μΆ€ν μ΄λ―Έμ§ μμ±μ μ€ν¨νμ΅λλ€.")
|
| 1452 |
-
|
| 1453 |
-
if full_response:
|
| 1454 |
-
st.subheader("μ΄ μλ΅ λ€μ΄λ‘λ")
|
| 1455 |
-
c1, c2 = st.columns(2)
|
| 1456 |
-
c1.download_button(
|
| 1457 |
-
"λ§ν¬λ€μ΄",
|
| 1458 |
-
data=full_response,
|
| 1459 |
-
file_name=f"{query[:30]}.md",
|
| 1460 |
-
mime="text/markdown"
|
| 1461 |
-
)
|
| 1462 |
-
c2.download_button(
|
| 1463 |
-
"HTML",
|
| 1464 |
-
data=md_to_html(full_response, query[:30]),
|
| 1465 |
-
file_name=f"{query[:30]}.html",
|
| 1466 |
-
mime="text/html"
|
| 1467 |
-
)
|
| 1468 |
-
|
| 1469 |
-
if st.session_state.auto_save and st.session_state.messages:
|
| 1470 |
-
try:
|
| 1471 |
-
fn = f"conversation_history_auto_{datetime.now():%Y%m%d_%H%M%S}.json"
|
| 1472 |
-
with open(fn, "w", encoding="utf-8") as fp:
|
| 1473 |
-
json.dump(st.session_state.messages, fp, ensure_ascii=False, indent=2)
|
| 1474 |
-
except Exception as e:
|
| 1475 |
-
logging.error(f"μλ μ μ₯ μ€ν¨: {e}")
|
| 1476 |
-
|
| 1477 |
-
except Exception as e:
|
| 1478 |
-
error_message = str(e)
|
| 1479 |
-
placeholder.error(f"μ€οΏ½οΏ½οΏ½ λ°μ: {error_message}")
|
| 1480 |
-
logging.error(f"μ
λ ₯ μ²λ¦¬ μ€λ₯: {error_message}")
|
| 1481 |
-
ans = f"μμ² μ²λ¦¬ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {error_message}"
|
| 1482 |
-
st.session_state.messages.append({"role": "assistant", "content": ans})
|
| 1483 |
-
|
| 1484 |
-
# ββββββββββββββββββββββββββββββββ main ββββββββββββββββββββββββββββββββββββ
|
| 1485 |
-
def main():
|
| 1486 |
-
st.write("==== μ ν리μΌμ΄μ
μμ μκ°:", datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "=====")
|
| 1487 |
-
agricultural_price_forecast_app()
|
| 1488 |
|
| 1489 |
if __name__ == "__main__":
|
| 1490 |
-
main()
|
| 1491 |
-
|
|
|
|
| 1 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import sys
|
| 3 |
import streamlit as st
|
| 4 |
+
from tempfile import NamedTemporaryFile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
def main():
|
| 7 |
try:
|
| 8 |
+
# Get the code from secrets
|
| 9 |
+
code = os.environ.get("MAIN_CODE")
|
| 10 |
|
| 11 |
+
if not code:
|
| 12 |
+
st.error("β οΈ The application code wasn't found in secrets. Please add the MAIN_CODE secret.")
|
| 13 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Try to fix any potential string issues
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
try:
|
| 17 |
+
# Just to verify the code is syntactically valid before writing to file
|
| 18 |
+
compile(code, '<string>', 'exec')
|
| 19 |
+
except SyntaxError as e:
|
| 20 |
+
st.error(f"β οΈ Syntax error in the application code: {str(e)}")
|
| 21 |
+
st.info("Please check your code for unterminated strings or other syntax errors.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Show the problematic line if possible
|
| 24 |
+
if hasattr(e, 'lineno') and hasattr(e, 'text'):
|
| 25 |
+
st.code(f"Line {e.lineno}: {e.text}")
|
| 26 |
+
st.write(f"Error occurs near character position: {e.offset}")
|
| 27 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# Create a temporary Python file
|
| 30 |
+
with NamedTemporaryFile(suffix='.py', delete=False, mode='w') as tmp:
|
| 31 |
+
tmp.write(code)
|
| 32 |
+
tmp_path = tmp.name
|
| 33 |
|
| 34 |
+
# Execute the code
|
| 35 |
+
exec(compile(code, tmp_path, 'exec'), globals())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# Clean up the temporary file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
try:
|
| 39 |
+
os.unlink(tmp_path)
|
| 40 |
+
except:
|
| 41 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
except Exception as e:
|
| 44 |
+
st.error(f"β οΈ Error loading or executing the application: {str(e)}")
|
| 45 |
+
import traceback
|
| 46 |
+
st.code(traceback.format_exc())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
if __name__ == "__main__":
|
| 49 |
+
main()
|
|
|