Spaces:
Running
on
Zero
Running
on
Zero
revert my changes
Browse files
app.py
CHANGED
|
@@ -3,137 +3,14 @@ import numpy as np
|
|
| 3 |
import random
|
| 4 |
import torch
|
| 5 |
import spaces
|
| 6 |
-
|
| 7 |
-
import json
|
| 8 |
-
import torch
|
| 9 |
from PIL import Image
|
| 10 |
-
|
| 11 |
-
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
| 12 |
-
from huggingface_hub import InferenceClient
|
| 13 |
import math
|
| 14 |
|
| 15 |
from optimization import optimize_pipeline_
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def polish_prompt_hf(original_prompt, system_prompt):
|
| 19 |
-
"""
|
| 20 |
-
Rewrites the prompt using a Hugging Face InferenceClient.
|
| 21 |
-
"""
|
| 22 |
-
# Ensure HF_TOKEN is set
|
| 23 |
-
api_key = os.environ.get("HF_TOKEN")
|
| 24 |
-
if not api_key:
|
| 25 |
-
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
|
| 26 |
-
return original_prompt
|
| 27 |
-
|
| 28 |
-
try:
|
| 29 |
-
# Initialize the client
|
| 30 |
-
client = InferenceClient(
|
| 31 |
-
provider="cerebras",
|
| 32 |
-
api_key=api_key,
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
# Format the messages for the chat completions API
|
| 36 |
-
messages = [
|
| 37 |
-
{"role": "system", "content": system_prompt},
|
| 38 |
-
{"role": "user", "content": original_prompt}
|
| 39 |
-
]
|
| 40 |
-
|
| 41 |
-
# Call the API
|
| 42 |
-
completion = client.chat.completions.create(
|
| 43 |
-
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
|
| 44 |
-
messages=messages,
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
-
# Parse the response
|
| 48 |
-
result = completion.choices[0].message.content
|
| 49 |
-
|
| 50 |
-
# Try to extract JSON if present
|
| 51 |
-
if '{"Rewritten"' in result:
|
| 52 |
-
try:
|
| 53 |
-
# Clean up the response
|
| 54 |
-
result = result.replace('```json', '').replace('```', '')
|
| 55 |
-
result_json = json.loads(result)
|
| 56 |
-
polished_prompt = result_json.get('Rewritten', result)
|
| 57 |
-
except:
|
| 58 |
-
polished_prompt = result
|
| 59 |
-
else:
|
| 60 |
-
polished_prompt = result
|
| 61 |
-
|
| 62 |
-
polished_prompt = polished_prompt.strip().replace("\n", " ")
|
| 63 |
-
return polished_prompt
|
| 64 |
-
|
| 65 |
-
except Exception as e:
|
| 66 |
-
print(f"Error during API call to Hugging Face: {e}")
|
| 67 |
-
# Fallback to original prompt if enhancement fails
|
| 68 |
-
return original_prompt
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
def polish_prompt(prompt, img):
|
| 72 |
-
"""
|
| 73 |
-
Main function to polish prompts for image editing using HF inference.
|
| 74 |
-
"""
|
| 75 |
-
SYSTEM_PROMPT = '''
|
| 76 |
-
# Edit Instruction Rewriter
|
| 77 |
-
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
|
| 78 |
-
|
| 79 |
-
Please strictly follow the rewriting rules below:
|
| 80 |
-
|
| 81 |
-
## 1. General Principles
|
| 82 |
-
- Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language.
|
| 83 |
-
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
|
| 84 |
-
- Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
|
| 85 |
-
- All added objects or modifications must align with the logic and style of the edited input image's overall scene.
|
| 86 |
-
|
| 87 |
-
## 2. Task Type Handling Rules
|
| 88 |
-
### 1. Add, Delete, Replace Tasks
|
| 89 |
-
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
|
| 90 |
-
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
|
| 91 |
-
> Original: "Add an animal"
|
| 92 |
-
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
|
| 93 |
-
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
|
| 94 |
-
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
|
| 95 |
-
|
| 96 |
-
### 2. Text Editing Tasks
|
| 97 |
-
- All text content must be enclosed in English double quotes " ". Do not translate or alter the original language of the text, and do not change the capitalization.
|
| 98 |
-
- **For text replacement tasks, always use the fixed template:**
|
| 99 |
-
- Replace "xx" to "yy".
|
| 100 |
-
- Replace the xx bounding box to "yy".
|
| 101 |
-
- If the user does not specify text content, infer and add concise text based on the instruction and the input image's context. For example:
|
| 102 |
-
> Original: "Add a line of text" (poster)
|
| 103 |
-
> Rewritten: "Add text "LIMITED EDITION" at the top center with slight shadow"
|
| 104 |
-
- Specify text position, color, and layout in a concise way.
|
| 105 |
-
|
| 106 |
-
### 3. Human Editing Tasks
|
| 107 |
-
- Maintain the person's core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.).
|
| 108 |
-
- If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style.
|
| 109 |
-
- **For expression changes, they must be natural and subtle, never exaggerated.**
|
| 110 |
-
- If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved.
|
| 111 |
-
- For background change tasks, emphasize maintaining subject consistency at first.
|
| 112 |
-
- Example:
|
| 113 |
-
> Original: "Change the person's hat"
|
| 114 |
-
> Rewritten: "Replace the man's hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged"
|
| 115 |
-
|
| 116 |
-
### 4. Style Transformation or Enhancement Tasks
|
| 117 |
-
- If a style is specified, describe it concisely with key visual traits. For example:
|
| 118 |
-
> Original: "Disco style"
|
| 119 |
-
> Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones"
|
| 120 |
-
- If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely.
|
| 121 |
-
- **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"
|
| 122 |
-
- If there are other changes, place the style description at the end.
|
| 123 |
-
|
| 124 |
-
## 3. Rationality and Logic Checks
|
| 125 |
-
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected.
|
| 126 |
-
- Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges).
|
| 127 |
-
|
| 128 |
-
# Output Format
|
| 129 |
-
Return only the rewritten instruction text directly, without JSON formatting or any other wrapper.
|
| 130 |
-
'''
|
| 131 |
-
|
| 132 |
-
# Note: We're not actually using the image in the HF version,
|
| 133 |
-
# but keeping the interface consistent
|
| 134 |
-
full_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
|
| 135 |
-
|
| 136 |
-
return polish_prompt_hf(full_prompt, SYSTEM_PROMPT)
|
| 137 |
|
| 138 |
|
| 139 |
# --- Model Loading ---
|
|
@@ -148,7 +25,7 @@ optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
|
|
| 148 |
# --- UI Constants and Helpers ---
|
| 149 |
MAX_SEED = np.iinfo(np.int32).max
|
| 150 |
|
| 151 |
-
# --- Main Inference Function ---
|
| 152 |
@spaces.GPU(duration=120)
|
| 153 |
def infer(
|
| 154 |
image,
|
|
@@ -156,14 +33,13 @@ def infer(
|
|
| 156 |
seed=42,
|
| 157 |
randomize_seed=False,
|
| 158 |
true_guidance_scale=4.0,
|
| 159 |
-
num_inference_steps=
|
| 160 |
-
rewrite_prompt=True,
|
| 161 |
progress=gr.Progress(track_tqdm=True),
|
| 162 |
):
|
| 163 |
"""
|
| 164 |
-
Generates an
|
| 165 |
"""
|
| 166 |
-
# Hardcode the negative prompt as
|
| 167 |
negative_prompt = " "
|
| 168 |
|
| 169 |
if randomize_seed:
|
|
@@ -172,83 +48,54 @@ def infer(
|
|
| 172 |
# Set up the generator for reproducibility
|
| 173 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 174 |
|
| 175 |
-
print(f"
|
| 176 |
print(f"Negative Prompt: '{negative_prompt}'")
|
| 177 |
-
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {
|
| 178 |
-
|
| 179 |
-
if rewrite_prompt:
|
| 180 |
-
prompt = polish_prompt(prompt, image)
|
| 181 |
-
print(f"Rewritten Prompt: {prompt}")
|
| 182 |
-
|
| 183 |
-
# Generate the edited image - always generate just 1 image
|
| 184 |
|
| 185 |
-
|
|
|
|
| 186 |
image,
|
| 187 |
prompt=prompt,
|
| 188 |
negative_prompt=negative_prompt,
|
| 189 |
num_inference_steps=num_inference_steps,
|
| 190 |
generator=generator,
|
| 191 |
true_cfg_scale=true_guidance_scale,
|
| 192 |
-
|
| 193 |
-
).images
|
| 194 |
-
|
| 195 |
-
# Return the first (and only) image
|
| 196 |
-
return images[0], seed
|
| 197 |
-
|
| 198 |
|
|
|
|
| 199 |
|
| 200 |
# --- Examples and UI Layout ---
|
|
|
|
| 201 |
|
| 202 |
css = """
|
| 203 |
#col-container {
|
| 204 |
margin: 0 auto;
|
| 205 |
max-width: 1024px;
|
| 206 |
}
|
| 207 |
-
#logo-title {
|
| 208 |
-
text-align: center;
|
| 209 |
-
}
|
| 210 |
-
#logo-title img {
|
| 211 |
-
width: 400px;
|
| 212 |
-
}
|
| 213 |
#edit_text{margin-top: -62px !important}
|
| 214 |
"""
|
| 215 |
|
| 216 |
with gr.Blocks(css=css) as demo:
|
| 217 |
with gr.Column(elem_id="col-container"):
|
| 218 |
-
gr.HTML("""
|
| 219 |
-
<
|
| 220 |
-
|
| 221 |
-
</div>
|
| 222 |
-
""")
|
| 223 |
-
gr.Markdown("""
|
| 224 |
-
[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
|
| 225 |
-
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.
|
| 226 |
-
""")
|
| 227 |
-
|
| 228 |
with gr.Row():
|
| 229 |
with gr.Column():
|
| 230 |
-
input_image = gr.Image(
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
|
|
|
|
|
|
| 234 |
)
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
show_label=True,
|
| 239 |
-
type="pil"
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
with gr.Row():
|
| 243 |
-
prompt = gr.Text(
|
| 244 |
-
label="Edit Instruction",
|
| 245 |
-
show_label=False,
|
| 246 |
-
placeholder="Describe the edit instruction (e.g., 'Replace the background with a sunset', 'Add a red hat', 'Remove the person')",
|
| 247 |
-
container=False,
|
| 248 |
-
)
|
| 249 |
-
run_button = gr.Button("Edit!", variant="primary")
|
| 250 |
|
| 251 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
| 252 |
seed = gr.Slider(
|
| 253 |
label="Seed",
|
| 254 |
minimum=0,
|
|
@@ -260,29 +107,24 @@ with gr.Blocks(css=css) as demo:
|
|
| 260 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 261 |
|
| 262 |
with gr.Row():
|
|
|
|
| 263 |
true_guidance_scale = gr.Slider(
|
| 264 |
label="True guidance scale",
|
| 265 |
minimum=1.0,
|
| 266 |
maximum=10.0,
|
| 267 |
step=0.1,
|
| 268 |
-
value=
|
| 269 |
)
|
| 270 |
|
| 271 |
num_inference_steps = gr.Slider(
|
| 272 |
label="Number of inference steps",
|
| 273 |
-
minimum=
|
| 274 |
maximum=50,
|
| 275 |
step=1,
|
| 276 |
-
value=
|
| 277 |
)
|
| 278 |
-
|
| 279 |
-
# Removed num_images_per_prompt slider entirely
|
| 280 |
-
rewrite_prompt = gr.Checkbox(
|
| 281 |
-
label="Enhance prompt (using HF Inference)",
|
| 282 |
-
value=True
|
| 283 |
-
)
|
| 284 |
|
| 285 |
-
#gr.Examples(examples=
|
| 286 |
|
| 287 |
gr.on(
|
| 288 |
triggers=[run_button.click, prompt.submit],
|
|
@@ -290,12 +132,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 290 |
inputs=[
|
| 291 |
input_image,
|
| 292 |
prompt,
|
|
|
|
| 293 |
seed,
|
| 294 |
randomize_seed,
|
| 295 |
true_guidance_scale,
|
| 296 |
num_inference_steps,
|
| 297 |
-
rewrite_prompt,
|
| 298 |
-
# Removed num_images_per_prompt from inputs
|
| 299 |
],
|
| 300 |
outputs=[result, seed],
|
| 301 |
)
|
|
|
|
| 3 |
import random
|
| 4 |
import torch
|
| 5 |
import spaces
|
| 6 |
+
|
|
|
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
+
import torch
|
|
|
|
|
|
|
| 9 |
import math
|
| 10 |
|
| 11 |
from optimization import optimize_pipeline_
|
| 12 |
+
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
|
| 13 |
+
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
# --- Model Loading ---
|
|
|
|
| 25 |
# --- UI Constants and Helpers ---
|
| 26 |
MAX_SEED = np.iinfo(np.int32).max
|
| 27 |
|
| 28 |
+
# --- Main Inference Function (with hardcoded negative prompt) ---
|
| 29 |
@spaces.GPU(duration=120)
|
| 30 |
def infer(
|
| 31 |
image,
|
|
|
|
| 33 |
seed=42,
|
| 34 |
randomize_seed=False,
|
| 35 |
true_guidance_scale=4.0,
|
| 36 |
+
num_inference_steps=50,
|
|
|
|
| 37 |
progress=gr.Progress(track_tqdm=True),
|
| 38 |
):
|
| 39 |
"""
|
| 40 |
+
Generates an image using the local Qwen-Image diffusers pipeline.
|
| 41 |
"""
|
| 42 |
+
# Hardcode the negative prompt as requested
|
| 43 |
negative_prompt = " "
|
| 44 |
|
| 45 |
if randomize_seed:
|
|
|
|
| 48 |
# Set up the generator for reproducibility
|
| 49 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 50 |
|
| 51 |
+
print(f"Calling pipeline with prompt: '{prompt}'")
|
| 52 |
print(f"Negative Prompt: '{negative_prompt}'")
|
| 53 |
+
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {guidance_scale}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# Generate the image
|
| 56 |
+
image = pipe(
|
| 57 |
image,
|
| 58 |
prompt=prompt,
|
| 59 |
negative_prompt=negative_prompt,
|
| 60 |
num_inference_steps=num_inference_steps,
|
| 61 |
generator=generator,
|
| 62 |
true_cfg_scale=true_guidance_scale,
|
| 63 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
return image, seed
|
| 66 |
|
| 67 |
# --- Examples and UI Layout ---
|
| 68 |
+
examples = []
|
| 69 |
|
| 70 |
css = """
|
| 71 |
#col-container {
|
| 72 |
margin: 0 auto;
|
| 73 |
max-width: 1024px;
|
| 74 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
#edit_text{margin-top: -62px !important}
|
| 76 |
"""
|
| 77 |
|
| 78 |
with gr.Blocks(css=css) as demo:
|
| 79 |
with gr.Column(elem_id="col-container"):
|
| 80 |
+
gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image Logo" width="400" style="display: block; margin: 0 auto;">')
|
| 81 |
+
gr.HTML('<h1 style="text-align: center;margin-left: 80px;color: #5b47d1;font-style: italic;">Edit</h1>', elem_id="edit_text")
|
| 82 |
+
gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
with gr.Row():
|
| 84 |
with gr.Column():
|
| 85 |
+
input_image = gr.Image(label="Input Image", show_label=False, type="pil")
|
| 86 |
+
prompt = gr.Text(
|
| 87 |
+
label="Prompt",
|
| 88 |
+
show_label=False,
|
| 89 |
+
placeholder="describe the edit instruction",
|
| 90 |
+
container=False,
|
| 91 |
)
|
| 92 |
+
run_button = gr.Button("Edit!", variant="primary")
|
| 93 |
+
|
| 94 |
+
result = gr.Image(label="Result", show_label=False, type="pil")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
with gr.Accordion("Advanced Settings", open=False):
|
| 97 |
+
# Negative prompt UI element is removed here
|
| 98 |
+
|
| 99 |
seed = gr.Slider(
|
| 100 |
label="Seed",
|
| 101 |
minimum=0,
|
|
|
|
| 107 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 108 |
|
| 109 |
with gr.Row():
|
| 110 |
+
|
| 111 |
true_guidance_scale = gr.Slider(
|
| 112 |
label="True guidance scale",
|
| 113 |
minimum=1.0,
|
| 114 |
maximum=10.0,
|
| 115 |
step=0.1,
|
| 116 |
+
value=1.0
|
| 117 |
)
|
| 118 |
|
| 119 |
num_inference_steps = gr.Slider(
|
| 120 |
label="Number of inference steps",
|
| 121 |
+
minimum=1,
|
| 122 |
maximum=50,
|
| 123 |
step=1,
|
| 124 |
+
value=50,
|
| 125 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
|
| 128 |
|
| 129 |
gr.on(
|
| 130 |
triggers=[run_button.click, prompt.submit],
|
|
|
|
| 132 |
inputs=[
|
| 133 |
input_image,
|
| 134 |
prompt,
|
| 135 |
+
# negative_prompt is no longer an input from the UI
|
| 136 |
seed,
|
| 137 |
randomize_seed,
|
| 138 |
true_guidance_scale,
|
| 139 |
num_inference_steps,
|
|
|
|
|
|
|
| 140 |
],
|
| 141 |
outputs=[result, seed],
|
| 142 |
)
|